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1. Introduction

This investigation continues the work in [ 1,2] developing adaptive numerical methods for quasilinear partial differential
equations featuring steep internal layers, in which the solution process starts on a coarse mesh where the problem is not yet
resolved. Throughout the coarse mesh and preasymptotic regimes, standard methods such as Newton iterations are known
to fail due to both the ill-conditioned and possibly indefinite Jacobians which are characteristic of the approximate discrete
problems, and the partial resolution of the problem data. This paper specifies an appropriate set of parameters that may be
used in the stabilized o -Newmark strategy of [2] applied to quasilinear diffusion problems, where the layers develop from
both the solution dependent coefficients and a variable dependent source. For the class of problems studied here

—divik(w)Vu) —f(x) =0, u=00nds2, and (1.1)
—div(x(|Vu|>)Vu) —f(x) =0, u=00nas, (1.2)

in which the diffusion is bounded away from zero, local uniqueness of the solution is known, as well as approximation
properties for the finite element solution using linear elements [3], assuming the mesh is sufficiently fine. For operators
containing steep solution-dependent layers in the coefficients, the approximation properties of the discrete solution are
useful only if the solution to the discrete nonlinear problem can be attained, and the current method attains such a solution
by means of a sequence of approximate problems with inexact source functions that limit to the discrete problem.

The methodology is to first discretize (1.1) and (1.2) on each mesh refinement then linearize the resulting discrete
problem, and to partially solve the sequence of resulting inaccurate and ill-conditioned coarse mesh problems by stabilized
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Newton-like iterations while adaptively refining the mesh leading to an accurate and efficient solve of an accurate
discretization of the problem. In previous work the focus was on the stabilization of the Jacobian by a combination of
regularization and added numerical dissipation. Currently, a formula for the numerical dissipation parameter is presented,
along with a new inexact method designed for problems where the variable-dependent source dominates the residual of
the Newton-like iterations.

Iterative rescaling techniques in the solution of nonlinear problems are not uncommon, see for instance the scaling
iterative algorithm (SIA) of [4] for the solution of semilinear elliptic problems, in which the solution u is rescaled at each
iteration. The rescaling of the Monge-Ampére equation in [5] to establish a fixed-point argument and recover a numerical
solution without having to assume the solution is small enough motivated the current approach. Here, the inexact method
rescales the variable dependent source until the solution iterates attain sufficient stability to solve for the given data.

Recent approaches such as [6,7] for monotone quasilinear problems use inexact linear and nonlinear solves to avoid
over-solving for the residual when the Galerkin or discretization error is the dominant source of error. It is assumed in their
analysis that the discrete problem on each refinement is well posed. In the problems studied here, the coarse mesh problem
may not be well posed, and may be a sufficiently bad approximation of the exact problem that estimates of the different
error sources are not necessarily well determined or useful. So long as the continuous problem is well-posed, at least locally
in the neighborhood of a solution, the current algorithm could be designed to limit to the methodology of [6,7] as opposed
to standard Newton iterations in the asymptotic regime.

In the current presentation the iterations on each preasymptotic refinement are ended when they stabilize to the
predicted linear convergence rate, which is a function of the numerical dissipation parameter. Combined with the criteria
that the residual from the linear solves on each mesh refinement must show sufficient decrease with respect to the residual
on the previous refinement, the sequence of stabilized and inexact problems recovers the unscaled discrete problem on a
mesh where it is better represented, and with an initial guess for the Newton-like iterations that yields the discrete problem
solvable. This method predicts the stability of the solve and allows the sequence of coarse mesh problems to be solved
approximately through the preasymptotic regime leading to an efficient solve in the asymptotic regime.

The remainder of the paper is organized as follows. Section 2 states the target problem class and the formulation of
the discrete problems. Section 3 reviews the Jacobian stabilization techniques developed by the author in previous work,
and which are further developed here. Section 4 presents a formulation for the numerical dissipation parameter y and
characterizes its properties within the adaptive framework; then Section 5 presents a formulation for the inexact scaling
parameter § and characterizes its convergence to unity within the adaptive method. Section 6 summarizes the results of
the previous three sections into an adaptive algorithm and proves the convergence of the residual of the discrete problem.
Finally, Section 7 demonstrates the method with a collection of numerical experiments featuring different types of internal
layers.

The following notation is used throughout the rest of the paper. In defining the weak and bilinear forms in the next
section (u(x), v(x)) = f o U(x)v(x) dx, and in later sections the discrete inner product between vectors uy, v, € R" is denoted
(ug, vr). The norm || - || where not otherwise specified is the L, norm. The nth iterate subordinate to the kth partition 7}
is denoted uj, while u" is the nth iteration on a fixed partition and u is the final iteration on the kth mesh, taken as the
approximate solution on 7.

2. Target problem class
The class of problems considered are quasilinear diffusion problems F(u, x) = 0, over polygonal domain £2 C R?, with
F:Xx 2 — Y*and F'(u, x) := F,(u, x) € L(X, Y*), where F(u, x) is given by
F(u,x) = —div(k)Vu) — f(x) =0, in2 CR*> u=00nas2, or (2.1)
F(u,x) == —div(k (|Vu/»)Vu) — f(x) =0, in2 C R?>, u=00nds2, (2.2)

with f(x) € L[,(£2) N Lo (£2). Multiplication against test functions v € Y and integration by parts yields the weak form of
each problem

B(u,v) = (k(w)Vu, Vv) = (f,v), forallvey, for (2.1), (2.3)
B(u, v) = (k(|Vul>)Vu, Vo) = (f,v) forallv ey, for (2.2). (2.4)

The linearized form induced by F'(u, x) := F,(u, x), is determined by taking the Gateaux derivative in direction w € X by
B'(u; w, v) = lim¢_,o d/dt (B(u 4 tw, v)) yielding

B (u; w, v) = (k(W)Vw, Vv) + (¢’ (w)wVu, Vv), for (2.1), (2.5)
B'(u; w, v) = (k(|Vu|?)Vw, Vv) + (&'(|Vu|?) 2Vu - Vw)Vu, V), for (2.2). (2.6)
Both types of problems fit into the context of [3] with the assumption that there is a solution u € H(} )N sz 1. (£2) and

F,(u,x) : H(}(.Q) — H~'(£2) is an isomorphism, in which case the solution u is an isolated solution, and approximation
properties for the linear Lagrange finite element solution can be shown to hold, assuming the mesh size is fine enough.
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