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a b s t r a c t

We propose a piecewise linear approximation method, based on the maximum entropy
principle, to approximate a nonnegative solution of a Fredholm integral equation numer-
ically. The theoretical analysis and numerical examples show that our method has a con-
vergence rate of order 2, and it can get more accurate approximations withmoremoments
used without ill-condition of the classic maximum entropy approach. The method can also
be applied to solve Fredholm integral equations with singular kernels.
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1. Introduction

Recently a maximum entropy method using piecewise linear functions has been developed for recovering a density
function for the statistical study of deterministic dynamical system on an interval [1]. This approach has its origin in the
1957 paper [2] by Jayne and was first adopted in [3] for the computation of a stationary density of an interval mapping
S : [0, 1] → [0, 1]. The renewed interest in the maximum entropy scheme is due to the observation that the employment
of piecewise polynomial functions, which are polynomial functions on each sub-domain from a finite partition of the whole
domain, can effectively eliminate the difficulty of ill-condition of the traditional maximum entropy method that uses only
polynomials as moment functions. Because of the locally nonzero property of the basis for such functions, the finite element
spaces of piecewise polynomial functions are widely used in numerical partial differential equations and integral equations.

Encouraged by the efficiency of the new finite elementmaximum entropymethod, wewould like to extend the approach
to compute a nonnegative solution of a Fredholm integral equation numerically under the assumption that such a solution
does exist.

A maximum entropy method was first proposed in [4] for solving Fredholm integral equations. Like all other traditional
maximumentropy approaches for calculating a density function numerically, themoment related functions used in [4]were
polynomials. Since the polynomial involved numerical computation is highly ill-conditioned as usual, it is not surprising that
no more than 10 or so moments could be used in the computation of the examples in the paper. In the last section of [4]
the author raised some question of the method: ‘‘It is not clear whether or not solutions generated by a larger number of
moments than used here would improve the numerical accuracy significantly’’. Our motivation of writing this paper is for
answering the above question.
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After giving some preliminaries in the next section, we present our piecewise linear maximum entropy method for
the integral equation in Section 3. A convergence analysis will be presented in Section 4. Numerical examples will be
demonstrated in Section 5 and we conclude in Section 6.

2. Preliminaries

In this sectionwe present the Fredholm integral equation and obtain an explicit formula for the solution of themaximum
entropy problem.

Let a and b be two real numbers with a < b, let L1(a, b) be the Banach space of real-valued Lebesgue integrable functions
defined on (a, b) with the L1-norm ∥f ∥1 =

 b
a |f (x)|dx, and let K be a linear integral operator from L1(a, b) into itself

defined by

(Kf )(x) =

 b

a
k(x, y)f (y)dy,

where the kernel function k is measurable and bounded on its domain. Let g ∈ L1(a, b) be given. The following operator
equation

(I − K)f = g (1)

is called the Fredholm integral equation of the second kind. For the purpose of the applicability of the maximum entropy
method for finding a solution of (1), we assume that a nonnegative solution f ∗ exists for the given g . A sufficient condition
to make it happen is that g is a nonnegative function and K is a positive operator such that ∥K∥1 < 1, where ∥K∥1 is the
operator norm of K . This follows from the Neumann series

(I − K)−1
= I + K + K 2

+ · · ·

so that (I − K)−1 exists and is positive.
For any f ∈ L1(a, b) and h ∈ L∞(a, b), the Banach space of essentially bounded Lebesgue measurable functions, we write

⟨f , h⟩ =
 b
a f (x)h(x)dx. Denote by K ′

: L∞(a, b) → L∞(a, b) the dual operator of K , defined by

⟨Kf , h⟩ = ⟨f , K ′h⟩

for all f ∈ L1(a, b) and h ∈ L∞(a, b). Then we have

(K ′h)(y) =

 b

a
k(x, y)h(x)dx.

Let h1, . . . , hs ∈ L∞(a, b) be a set of linearly independent functions. Multiplying each of them to the equality

(I − K)f ∗
= g

and integrating over [a, b], we have

⟨f ∗, (I − K ′)hi⟩ = ⟨g, hi⟩, i = 1, . . . , s.

We call such initially chosen functions hi the generating functions.
Define gi = (I − K ′)hi for each i, which are called the moment functions. Denote mi = ⟨g, hi⟩ for each i. Then the above

equalities can be written as the moment conditions

⟨f ∗, gi⟩ = mi, i = 1, . . . , s.

Under the condition that f ∗
∈ Lp(a, b) for some 1 < p < ∞, if an infinite sequence of the functions {hi} is chosen such

that the resulting sequence {gi} is dense in Lq(a, b) with 1/p + 1/q = 1, then the condition

⟨f ∗, gi⟩ = mi, i = 1, 2, . . .

determines f ∗ uniquely. This is possible, for example, if I − K is one-to-one and onto, so that (I − K)−1 is also bounded by
Banach’s Inverse Mapping Theorem, and if {hi} is dense in Lq(a, b). The convergence analysis in Section 4 even shows that
the sequence of piecewise linear functions satisfies the above purpose.

Our strategy to recover the unknown solution f ∗ numerically is via solving the equations

⟨w, gi⟩ = mi, i = 1, . . . , s

for the unknown nonnegative function w with the maximum entropy principle. In the maximum entropy approximation,
for the convenience of notation and analysis, wemaximize amodified Boltzmann entropy [5], which is a nonlinear functional
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