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a b s t r a c t

A numerical technique is developed for the efficient numerical differentiation of
regular implicitly-defined curves existing in high-dimensional real space such as those
representing homotopies,where the systemof equationswhichdefines the curve implicitly
is assumed to be sparse. The calculation is verified numerically through its application
to the curve defined implicitly by a homotopy constructed based on a discretization
of the equations governing compressible aerodynamic fluid flow. Consideration is given
to computational cost, data storage, and accuracy. This method is applicable to any
implicitly-defined curves or trajectories which can occur, for example, in dynamical
systems analysis or control. Applications also exist in the area of homotopy continuation
where implicitly-defined curves are approximately traced numerically. Such applications
include the analysis of curve traceability and the construction of higher order predictors.
The latter is investigated numerically and it is found that increasing the order of accuracy of
the predictor can significantly improve the curve-tracing accuracy within a limited radius.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Consider a curve segment defined implicitly by the system of equations

H (q (λ) , λ) = 0, (1)

H : RN
×R→ RN , q ∈ RN , λ ∈ R on some interval λ ∈ Λ, Λ ⊂ R. Without loss of generality, let Λ = {[0, 1]}, and assume

that the curve is oriented in the direction of decreasing λ. In this paper we assume that H is at least C1 differentiable,
invertible, and that the curve is regular on Λ. As such, the curve derivatives cannot vanish and no bifurcations are present.
Hence, Eq. (1) is said to describe a regular homotopy [1] inRN .While homotopies including bifurcations have garneredmuch
interest for the study of systems of equations of multiple solutions [2–8], and we do recognize the importance of including
consideration for such points, they fall outside the scope of our particular applications and hence the scope of this paper.

It may be of practical interest to calculate higher derivatives of the curve, either for analysis or for application to
numerical algorithms. While such calculations have been performed previously [9–11], the authors have not included
special consideration for sparsity and the calculations can become prohibitively expensive if H is large and sparse. It is
also important that the calculations be efficient if the calculation is to be used as part of a cost-competitive continuation
algorithm. An examplewhere this is important is homotopy continuation [1], whichwe have been developing as an efficient
continuation strategy for solving the sparse algebraic systems of equations arising in computational fluid dynamics (CFD)
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problems [12–14]. These systems of equations are sparse and it is not uncommon for the equations to number in the tens
of millions, or even higher in some applications.

The calculations in this paper are developed in a Jacobian-free Krylov framework using the flexible generalized minimal
residual (FGMRES) [15] method, though any linear solver suitable for solving linear systems of the form

∇qHx = b (2)

could be used, where x, b ∈ RN and ∇H indicates the Jacobian1 of H . The distinction that we are making with Eq. (2) is
that the linear system is represented by a Jacobianmatrix. Some linear solvers canmake use of approximate Jacobian-vector
products to avoid forming the Jacobian matrix explicitly.

2. Tangent vector

Consider the curve defined implicitly by a regular homotopy

H (c (s)) = 0, (3)

where the curve c (s) = (q (s) ; λ (s)), c : R→ RN
× R has an arclength parametrization [16] defined implicitly by

ċ (s) · ċ (s) = 1, (4)

s ∈ S, S ⊂ R, S = {[0, stot]}. Differentiating both sides of Eq. (3) with respect to the arclength parameter s gives:

∇H (c (s)) ċ (s) = 0, (5)

which can also be written:

∇qH (c (s)) q̇ (s)+ λ̇ (s)
∂

∂λ
H (c (s)) = 0, (6)

or, after rearranging:

∇qH (c (s))

−1
λ̇ (s)

q̇ (s)

=

∂

∂λ
H (c (s)) . (7)

Define the vector z ∈ RN such that

∇qH (c (s)) z =
∂

∂λ
H (c (s)) . (8)

Then

q̇ = −λ̇z (9)

and

ċ (s) · ċ (s) = q̇ (s) · q̇ (s)+ λ̇ (s) λ̇ (s) = λ̇2 [z · z+ 1] . (10)

Since ċ (s) · ċ (s) = 1, Eq. (10) can be used to obtain an equation for λ̇ (s):

λ̇ (s) =
−1

√
z · z+ 1

, (11)

where the negative sign has been included to force a negative orientation for λ̇ (s), which is the convention that we have
adopted. Substituting this back into Eq. (7) gives the expression for q̇ (s):

q̇ (s) = −λ̇z. (12)

The tangent vector can thus be calculated from Eqs. (11) and (12), where z is defined by Eq. (8) and requires the solution to
a sparse linear system of equations.

3. Curvature vector

As with the tangent vector, the curvature vector will depend on the parametrization. Carrying over from the tangent
calculation, an arclength parametrization is assumed. The derivation begins by differentiating both sides of Eq. (5), which
gives

∇H (c (s)) c̈ (s)+∇2H (c (s)) [ċ (s) , ċ (s)] = 0. (13)

1 When ∇ appears without subscript, differentiation is performed with respect to all variables including λ. The notation ∇q means that differentiation
is with respect to the vector q only.
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