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a b s t r a c t

In this paper, we propose a new semiparametric model called generalized varying index
coefficientmodels (GVICMs). The GVICM is a generalization of the varying index coefficient
model (VICM) proposed by Ma and Song (2014), by allowing for non-Gaussian data and
nonlinear link functions. The GVICM serves as a good tool for modeling and assessing
nonlinear interaction effects between grouped covariates and the response variable. Our
main goal is to estimate the unknown parameters and nonparametric functions. Firstly, we
develop a profile spline quasi-likelihood estimation procedure to estimate the regression
parameters and nonparametric coefficients in which the nonparametric functions are
approximated by B-spline basis functions. Under some mild conditions, we establish
asymptotic normalities of parameter estimations as well as the convergence rates of
nonparametric estimators. Secondly, we develop a two-step spline backfitted local quasi-
likelihood estimation for achieving asymptotic distribution of nonparametric function.
Moreover, the oracle property of the nonparametric estimator is also established by
utilizing the two-step estimation approach. Simulation study and a set of real data are
carried out to investigate the performance of the proposed method.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Semiparametricmodels arise frequently in the field of statistics andpractice. This ismainly because they retain the virtues
of both parametric and nonparametric modeling, that is, they can reduce the high risk of misspecification with respect to
fully parametric models and avoid some serious drawbacks such as the curse of dimensionality, difficulty of interpretation
and lack of extrapolation capability relative to purely nonparametric methods. Due to these advantages mentioned above,
semiparametric models have been paid more and more attention recently. Here we only list a few. See single index models
[1,2], varying coefficient models [3,4], partially linear varying coefficient models [5,6], partially linear single index models
[7,8], additive models [9,10], single-index varying coefficient models [11–14] and so on. Recently, Ma and Song [15]
presented a new class of varying index coefficient models (VICMs) which are flexible by unifying diverse semiparametric
regression models. The VICM has the following form

Y = m(X, Z, β) + ε =

d
l=1

ml(ZTβl)Xl + ε, (1)

where βl = (βl1, . . . , βlp)
T are the coefficient vectors which vary with different covariates Xl, and ml(·) are unknown

nonparametric function for 1 ≤ l ≤ d. For the reason of identifiability, we generally assume β =

βT
1, . . . ,β

T
d

T
belongs to
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the parameter space:

Θ =


β =


βT
l : 1 ≤ l ≤ d

T
:
βl

 = 1, βl1 > 0, βl ∈ Rp


, (2)

where ∥·∥ denotes the Euclidean norm of a vector. The VICM encompasses the above mentioned semiparametric models as
special cases. The more details about the relationship of the VICM to the existing models can refer to the Section 2 of Ma
and Song [15].

As far as we know, generalized linear models (GLMs) have more wide applications than linear models, since they can
deal with different types of responses, for example, binary data and count data. Although the VICM is natural and useful
modeling tool in many practical applications, we find that the VICM is only suitable for continuous data but not for discrete
data. Motivated by the same spirit that generalized linear models (GLMs, McCullagh and Nelder [16]) provide an extension
of linear models, we propose a new class of semiparametric models, namely, generalized varying index coefficient models
(GVICM). The GVICM is a useful extension of the VICM in dealing with different types of responses. Let Y be a response
variable and (X, Z) be its associated covariates, the GVICM takes the form

E(Y |X, Z ) = µ(X, Z) = g−1(η), with η = m(X, Z, β) =

d
l=1

ml(ZTβl)Xl, (3)

where g(·) is a known link function, which is monotone and differentiable. Without loss of generality, we assume that
the response variable of the GVICM follows an exponential family distribution, so we further assume that the conditional
variance is a function of the mean defined by

Var(Y |X, Z ) = V (µ(X, Z)), (4)

where V is a known positive function. The GVICM not only maintains all superior statistical properties of the VCIM but also
possesses some properties that the VCIM do not have, for example, it can deal with the non-Gaussian data and nonlinear link
functions. The proposed GVICM (3) is flexible, which includes various existing generalized semiparametric models. Here we
only list a few. For example, when d ≡ 1 and X1 = 1, it reduces to the generalized single index model [17]; when ml(·)
are set as constant for l ≥ 2 and X1 = 1, it reduces to the generalized partial linear single index model [18]; when βl are
known and Xl ≡ 1, it reduces to the generalized additive model [19–21]; when the link function g is identity, it reduces to
the VICM. Therefore, the research regarding GVICMmodel is of great theoretical and practical significance. In this paper, our
aim is to estimate the unknown coefficient vectors βl and the nonparametric functionsml(·) in the model (3) with a known
link function g(·). As we all know, the computing speed of spline estimation approach is faster than that of kernel-based in
semiparametric models (see [22,23]). Moreover, kernel-based methods may become very complicated to solve the problem
of handlingmultiple nonparametric functions simultaneously. Thus, we firstly propose a profile quasi-likelihood estimation
procedure based on B-spline basis functions approximations, and establish root n-consistency and asymptotic normality of
the parameter vector β. Then, a two-step spline backfitted local quasi-likelihood is developed for studying the asymptotic
normality of the estimator of nonparametric function.

The rest of this article is organized as follows. In Section 2, we develop the profile spline quasi-likelihood approach for
the GVICM, where the nonparametric functions are approximated by B-spline. Then asymptotic properties of the proposed
estimators are presented in this section. In Section 3, in order to obtain the asymptotic distribution of the nonparametric
function ml(·), we describe a two-step spline backfitted local quasi-likelihood (SBLQL) estimation. In Section 4, we present
an algorithm for the estimation procedure. Monte Carlo simulation studies and a real data analysis are used to illustrate the
proposed methodology in Section 5. Some concluding remarks are given in Section 6. All the regularity conditions and the
technical proofs are provided in the Appendix.

2. Profile spline quasi-likelihood estimator and sampling properties

2.1. Estimation procedure for the GVICM

Suppose that {(Xi, Zi, Yi), 1 ≤ i ≤ n} is an independent and identically distributed sample from the model (3), where
Xi = (Xi1, . . . , Xid)

T and Zi = (Zi1, . . . , Zip)T . Our main interest is to estimate the coefficient vectors βl and nonparametric
functionsml(·) for l = 1, . . . , d. Then the conditional quasi-likelihood function is defined by

Q (µ, y) =

 µ

y

y − s
V (s)

ds. (5)

Denote by Ln(β,m) the quasi-likelihood of the collected data {(Xi, Zi, Yi), 1 ≤ i ≤ n}. Thus, we can obtain the estimators of
β andml(·) by maximizing the following quasi-likelihood function

Ln(β,m) =

n
i=1

Q


g−1


d

l=1

ml(ZT
i βl)Xil


, Yi


(6)
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