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a b s t r a c t

Partially linear model is useful in statistical model as a multivariate nonparametric fitting
method. This paper dealswith statistical inference for the partially linearmodel in the pres-
ence ofmulticollinearity.When some additional linear restrictions are assumed to hold, the
corresponding restricted difference-based Liu estimator for the parametric component is
constructed. The asymptotically properties of the proposed estimators are discussed. Fi-
nally, a simulation study is presented to explain the performance of the estimators.
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1. Introduction

Let us consider the following partially linear model

yi = X ′

iβ + f (ti) + εi, i = 1, . . . , n (1)
with yi denotes a scalar response, Xi = (Xi1, . . . , Xip)

′ denotes a p × 1 independent vectors with a non-singular covariance
matrix ΣX , β = (β1, . . . , βp)

′ denotes a p-vector of unknown parameters, f (·) is the unknown function, the model error εi
is an independent random error with zero mean and variance σ 2.

Rewrite model (1) in matrix notation as
y = Xβ + f (t) + ε (2)

where y = (y1, . . . , yn)′, f (t) = (f (t1), . . . , f (tn))′ , ε = (ε1, . . . , εn)
′ and X = (X1, . . . , Xn)

′ is the n × p matrix.
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Partial linear models are more flexible than standard linear models since they have a parametric and a nonparametric
component. They can be a suitable choice when one suspects that the response y linearly depends on X , but that it is
nonlinearly related to X .

The condition number is a measure of the presence of multicollinearity. The condition number of the matrix X
presents some information about the existence of multicollinearity, however it does not illustrate the structure of the
linear dependency among the column vectors X1, X2, . . . , Xn. The best way of illustrating the existence and structure of
multicollinearity is to see the eigenvalues of X ′X . If X ′X is ill-conditioned with a large condition number a Liu regression
estimator can be used to estimate β (see e.g. [1–7]). In this paper, we will examine a biased estimation techniques to be
followed when the matrix X ′X appears to be ill-conditioned in the partial linear model. We suppose that the condition
number of the parametric component is large explains that a biased estimation procedure is desirable.

In this paper, a restricted difference-based estimator is presented for the vector parameter β in the partially linearmodel
when the linear nonstochastic constraint is assumed to hold. We also examine the properties of the proposed estimator.

The rest of the paper is organized as follows: the restricted difference-based Liu estimator is defined in Section 2 and
the properties of the proposed estimator are discussed in Section 3. The performance of the new estimator is evaluated by
a simulation study in Section 4 and some conclusions are given in Section 5.

2. Profile least-squares estimator

In this section we will propose the restricted difference-based Liu estimator in partially linear model.

2.1. Difference-based estimator

Let d = (d0, . . . , dm) be a m + 1 vector, where m is the order of differencing and d0, . . . , dm are differencing weights
satisfying the conditions

m
j=0

dj = 0,
m
j=0

d2j = 1. (3)

Moreover, for k = 1, . . . ,m let ck =
m+1−k

i=1 didi+k. Now, we denote the (n−m)×n differencing matrix Dwhose elements
satisfy Eq. (3) as follows:

D =



d0 d1 · · · dm 0 0 · · · 0
0 d0 d1 · · · dm 0 · · · 0
· · · · · ·

· · · · · ·

· · · · · ·

0 0 · · · d1 · · · dm 0 0
0 0 · · · d0 d1 · · · dm 0
0 0 · · · 0 d0 d1 · · · dm


. (4)

This and related matrices are given, for example, in [8]. Then we can use the differencing matrix to model (2), and this leads
to direct estimation of the parametric effect. In particular, take

Dy = DXβ + Df (t) + Dϵ. (5)

Since the data have been reordered so that the X ′s are close, the application of the differencing matrix D in model (3) can
remove the nonparametric effect in large samples [8]. This ignores the presence of Df (t). Thus, we may write Eq. (7) as

Dy .
= DXβ + Dε (6)

or y .
= Xβ +ε (7)

wherey = Dy,X = DX andε = Dε.
For arbitrary differencing coefficients satisfying Eq. (6), Yatchew [9] defines a simple differencing estimator of the

parameter β in a partial linear model

β̂ = (X ′X)−1X ′y. (8)

In order to account for the parameter β in Eq. (3), we propose the modified estimator of σ 2, defined as

σ̂ 2
=

y′(I − P)y
tr(D′(I − P)D)

(9)

where P is the projection matrix and defined as

P = X(X ′X)−1X ′. (10)
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