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a b s t r a c t

A generalized eigenvalue algorithm for a certain class of tridiagonal matrix pencils is
presented. The algorithm appears as the time evolution equation of a nonautonomous
discrete integrable system associated with a polynomial sequence which has some
orthogonality on the support set of the zeros of the characteristic polynomial for a
tridiagonal matrix pencil. The convergence of the algorithm is discussed by using the
solution to the initial value problem for the corresponding discrete integrable system.
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1. Introduction

Applications of discrete integrable systems to numerical algorithms are important and fascinating topics. Since the end
of the twentieth century, a number of relationships between classical numerical algorithms and integrable systems have
been studied (see the review papers [1–3]). On this basis, new algorithms based on discrete integrable systems have been
developed: (i) singular value algorithms for bidiagonalmatrices based on the discrete Lotka–Volterra equation [4,5], (ii) Padé
approximation algorithms based on the discrete relativistic Toda lattice [6] and the discrete Schur flow [7], (iii) eigenvalue
algorithms for band matrices based on the discrete hungry Lotka–Volterra equation [8] and the nonautonomous discrete
hungry Toda lattice [9], and (iv) algorithms for computing D-optimal designs based on the nonautonomous discrete Toda
(nd-Toda) lattice [10] and the discrete modified KdV equation [11].

In this paper, we focus on a nonautonomous discrete integrable system called the RII chain [12], which is associated with
the generalized eigenvalue problem for tridiagonal matrix pencils [13]. The relationship between the finite RII chain and the
generalized eigenvalue problem can be understood to be an analogue of the connection between the finite nd-Toda lattice
and the eigenvalue problem for tridiagonalmatrices. In numerical analysis, the time evolution equation of the finite nd-Toda
lattice is called the dqds (differential quotient difference with shifts) algorithm [14], which is well known as a fast and accurate
iterative algorithm for computing eigenvalues or singular values. Therefore, it is worth to consider the application of the
finite RII chain to algorithms for computing generalized eigenvalues. The purpose of this paper is to construct a generalized
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eigenvalue algorithm based on the finite RII chain and to prove the convergence of the algorithm. Further improvements
and comparisons with traditional methods will be studied in subsequent papers.

The nd-Toda lattice on a semi-infinite lattice or a non-periodic finite lattice has a Hankel determinant solution. In the
background, there are monic orthogonal polynomials, which give rise to this solution; monic orthogonal polynomials have
a determinant expression that relates to the Hankel determinant, and spectral transformations for monic orthogonal
polynomials give the Lax pair of the nd-Toda lattice [15,16]. Especially, for the finite lattice case, we can easily solve the
initial value problem for the nd-Toda lattice with the Gauss quadrature formula formonic finite orthogonal polynomials. This
special property of the discrete integrable system allows us to analyse the behaviour of the system in detail and tells us how
parameters should be chosen to accelerate the convergence of the dqds algorithm. We will give a review of this theory in
Section 2.

The theory abovewill be extended to the RII chain in Section 3. The three-term recurrence relation thatmonic orthogonal
polynomials satisfy arises from a tridiagonal matrix. In a similar way, a tridiagonal matrix pencil defines amonic polynomial
sequence. This polynomial sequence, called monic RII polynomials [17], possesses similar properties to monic orthogonal
polynomials and their spectral transformations yield the monic type RII chain. A determinant expression of the monic
RII polynomials gives a Hankel determinant solution and, in particular for the finite lattice case, a convergence theorem
of themonic RII chain is shown under an assumption. This theorem enables us to design a generalized eigenvalue algorithm.

The dqds algorithm is a subtraction-free algorithm, i.e., the recurrence equations of the dqds algorithm do not contain
subtraction operations except origin shifts (see Section 2.3). The subtraction-free form is numerically effective to avoid
the loss of significant digits. In addition, there is another application of the subtraction-free form: ultradiscretization [18] or
tropicalization [19]; e.g., the ultradiscretization of the finite nd-Toda lattice in a subtraction-free form gives a time evolution
equation of the box–ball systemwith a carrier [20]. In Section 4, for themonic type RII chain, wewill present its subtraction-
free form, which contains no subtractions except origin shifts under some conditions. It is considered that this form makes
the computation of the proposed algorithm more accurate. At the end of the paper, numerical examples will be presented
to confirm that the proposed algorithm computes the generalized eigenvalues of given tridiagonal matrix pencils fast and
accurately.

2. Monic orthogonal polynomials, nd-Toda lattice, and dqds algorithm

First, we will review the connection between the theory of orthogonal polynomials and the nd-Toda lattice.

2.1. Infinite dimensional case

Let us consider a tridiagonal semi-infinite matrix of the form
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where t ∈ N is the discrete time, whose evolution will be introduced later. Let In denote the identity matrix of order n and
B(t)
n the nth order leading principal submatrix of B(t). We now introduce a polynomial sequence {φ
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n (x) is a monic polynomial of degree n. The Laplace expansion for det(xIn+1 − B(t)
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row yields the three-term recurrence relation
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where we set w
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−1(x) := 0. It is well known that the three-term recurrence relation of the form (2.1) gives

the following classical theorem.

Theorem 2.1 (Favard’s Theorem [21, Chapter I, Section 4]). For the polynomials {φ(t)
n (x)}∞n=0 satisfying the three-term recurrence

relation (2.1) and any nonzero constant h(t)
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such that the orthogonality relation
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and δm,n is Kronecker delta.
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