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a b s t r a c t

An inverse eigenvalue problem for the finite element model of a longitudinally vibrating
rod whose one end is fixed and the other end is supported on a spring is considered. It
is known that the mass and stiffness matrices are both tridiagonal for the finite element
model of the rod based on linear shape functions. It is shown that the cross section areas
can be determined from the spectrum of the rod. The inverse vibration problem can be
recast into an inverse eigenvalue problem of a special Jacobi matrix. The necessary and
sufficient conditions for the construction of a physically realizable rod with positive cross
section areas are established. A numerical method is presented and an illustrative example
is given.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The process of formulating, analyzing and deriving the spectral information and, hence, inducing the dynamic behavior
of a system from its priori known physical parameters, is referred to as a direct vibration problem. The inverse vibration
problem, in contrast, is to validate, determine, or estimate the physical parameters of the system according to its observed
or expected dynamical behavior. The inverse vibration problem is just as important as the direct vibration problem in
applications. There are different kinds of inverse vibration problems depending on the type of system, the model of system
and prescribed spectral data. Inverse vibration problems are studied extensively, see, for example, [1]. The discrete inverse
problems in vibrationmay be transformed into inverse eigenvalue problems for structuredmatrices. See [2–4] for an overall
treatment of inverse eigenvalue problems, [5–10] for an exhaustive classification of, and computational procedures for the
inverse eigenvalue problems.

A system has a structure, a connectivity pattern, and this will be mirrored in the structures, the patterns of zero and
non-zero entries in the corresponding matrix. For the problem to be more significant, it is often necessary to confine the
reconstruction to certain special classes of matrices. On the other hand, lots of specially structured matrices enjoy many
interesting properties. These properties not only can make the algorithms for some direct problems more efficient, for
example, [11,12], but also can help to solve inverse eigenvalue problems. The inverse eigenvalue problem for the finite
element model of a vibrating rod considered in this paper is a special case of the inverse eigenvalue problems of Jacobi
matrices.

∗ Corresponding author.
E-mail addresses: xiaomaoer@163.com (Y. Wei), hdai@nuaa.edu.cn (H. Dai).

http://dx.doi.org/10.1016/j.cam.2015.12.038
0377-0427/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.cam.2015.12.038
http://www.elsevier.com/locate/cam
http://www.elsevier.com/locate/cam
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cam.2015.12.038&domain=pdf
mailto:xiaomaoer@163.com
mailto:hdai@nuaa.edu.cn
http://dx.doi.org/10.1016/j.cam.2015.12.038


Y. Wei, H. Dai / Journal of Computational and Applied Mathematics 300 (2016) 172–182 173

The free longitudinal vibrations of a thin rod of length L, cross-sectional area A(x), Young’s modulus E and density ρ are
governed by the following equation

d
dx


EA(x)

du(x)
dx


+ λρA(x)u(x) = 0, 0 ≤ x ≤ L, λ = ω2, (1)

where ω is the natural frequency of the rod. Assume that the left end of the rod is fixed and the right end is supported on a
spring having the stiffness kn+1. In this case, the end conditions are

u(0) = 0, EA(L)
du(x)
dx


x=L

= kn+1u(L), (2)

and are said to be the fixed–elastically restrained end conditions. The fixed–free and the fixed–fixed end conditions
correspond to kn+1 = 0 and kn+1 = ∞, respectively.

Inverse eigenvalue problems of the continuous model of the rod are associated with inverse Sturm–Liouville problems,
which have been addressed by numerous authors, see, for example, [13–18]. Levitan [19] and Gladwell [1] expounded
the results associated with the inverse Sturm–Liouville problems. Ram [20] considered an inverse mode problem for the
continuous model of an axially vibrating rod, and showed that the density and axial rigidity functions are determined by
two eigenvalues, their corresponding eigenfunctions and the totalmass of the rod. Recently, Gao [21],Morassi [22] presented
numerical methods for recovering approximately the cross-sectional area of the vibrating rods having prescribed values of
the first n eigenvalues.

Inverse vibration problems for the finite difference model of the vibrating rod are formulated as inverse eigenvalue
problems for Jacobi matrices, which have been studied extensively, see, for example, [23–27]. Gladwell and Gbadeyan [28]
showed that themass and stiffnessmatrices of the finite differencemodel of the vibrating rodmay be reconstructed uniquely
from two sets of eigenvalues for the fixed–free and fixed–fixed boundary conditions. Gladwell [29] considered the inverse
mode problem for the finite difference model of the vibrating rod, and showed that the discrete systemmay be constructed
uniquely, apart from a scale factor, from two eigenvalues and corresponding eigenvectors. However, frequently, the physical
properties, Young’s modulus E and density ρ, of a homogeneous rod are constants and the cross-sectional area A(x) varies.
Ram and Elishakoff [30] showed that the cross-sectional area of the finite difference model of an axially vibrating non-
uniform rod can be reconstructed from one eigenpair and the total mass of the rod. Ram and Elhay [31] considered the
problem of reconstructing the cross-sectional area of the finite difference model of an axially vibrating rod from one set of
eigenvalues for the fixed–free boundary condition, and proposed an iterative algorithm for solving the problem. Lu et al. [32,
33] recasted the problem into an inverse eigenvalue problem of a specially structured Jacobi matrix, and gave sufficient and
some necessary conditions for the inverse eigenvalue problem to have a solution, and developed a numerical method for
this problem.

Discretizing (1) and (2) by the finite element method, based on linear shape functions, we get

Knu = λMnu, (3)

where

Kn =
nE
L



A1 + A2 −A2

−A2 A2 + A3
. . .

. . .
. . .

. . .

. . . An−1 + An −An
−An An + 3An+1

 ,

and

Mn =
ρL
6n



2(A1 + A2) A2

A2 2(A2 + A3)
. . .

. . .
. . .

. . .

. . . 2(An−1 + An) An
An 2An

 ,

with

An+1 =
kn+1L
3nE

. (4)

Note that the finite element model, based on linear shape functions, of Eq. (1) subject to the fixed–fixed end condition is
given by

(Kn−1 − λMn−1)u = 0,
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