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h i g h l i g h t s

• Penalty factor is only related to the information at the current iterate point.
• The sequence of the penalty parameter is non-monotone.
• The search direction is related to the penalty factor.
• The acceptable criterion is not related to the penalty factor.
• Method can handle degenerate problems and inconsistent constraint linearizations.
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a b s t r a c t

The exact penalty methods are very popular because of their ability to handle degenerate
problems and inconsistent constraint linearizations. This paper presents a line search exact
penalty method with bi-object strategy (LSBO) for nonlinear constrained optimization.
In the algorithm LSBO, the penalty parameter is selected at every iteration such that
the sufficient progress toward feasibility and optimality is guaranteed along the search
direction. In contrast with classical exact penalization approaches, LSBO method has two
goals to determine whether the current iteration is successful or not. One is improving
the feasibility and the other is reducing the value of the objective function. Moreover,
the penalty parameter is only related to the information at the current iterate point.
The sequence of the penalty parameter is non-monotone, which does not affect the
global convergence in theory and is seen to be advantageous in practice. It is shown
that the algorithm enjoys favorable global convergence properties under the weaker
assumptions. Numerical experiments illustrate the behavior of the algorithm on various
difficult situations.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we develop a line search exact penalty method with two-object strategy for finding a local solution of the
following nonlinear programming problem

min f (x),
s.t. ci(x) ≥ 0, i ∈ I = {1, . . . ,m},

(1.1)

where we assume f : Rn
→ R and ci : Rn

→ Rm (i ∈ I) are twice continuously differentiable.
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There are many practical methods for solving problem (1.1), for example, the sequential quadratic programming (SQP)
methods [1], the trust-region SQPmethods [2], the interior point methods [3] and so on. All optimization methods generate
a sequence of trial steps, which are computed as solutions of some quadratic or linear–quadratic model. The criteria for
accepting or rejecting trial steps are the strategy for guaranteeing global convergence. One of the strategies is to use some
merit function or some penalty function to measure the quality of a trial step. The penalty function is usually a linear
combination of the objective function and somemeasure of constraint violation, where the objective functionminimization
and the constraint satisfaction are treated togetherwithin the framework of a single penalty functionminimization problem.

The main difficulty associated with the use of penalty functions is the choice of the penalty parameter. There is usually
a threshold value below which the penalty function does not have a local minimum at the solution to (1.1). This threshold
value is unknown in advance. If the initial choice of the penalty parameter is too small, the iterates may move away from
the solution which may result in an infeasible point of (1.1) or even an unbounded below in the penalty function. On the
other hand, if the penalty parameter is excessively large, the penalty function may be difficult to minimize, as emphasizing
constraint feasibility toomuchmay lead to small trial steps (or even the rejection of good trial steps) on the curved boundary
of the feasible region of (1.1).

In order to handle the selection of the penalty parameter, some researchers present the various techniques without the
penalty function, which are called the penalty-free-type methods, for example, see [4–9] and the references therein. Some
other people research the updating strategies of the penalty parameter adaptively, e.g., [10–19]. Among those penalty-type
methods which use any penalty function, the exact penalty methods are very popular because of their ability to handle
degenerate problems and inconsistent constraint linearizations [11,12]. Exact penalty methods have also been used
successfully to solve mathematical programs with complementarity constraints (MPCCs) [17], a class of problems that do
not satisfy the Mangasarian–Fromovitz constraint qualification at any feasible point.

The idea in this paper is motivated by the penalty-type methods and the penalty-free-type methods. The trial step
(the search direction) is computed by a piecewise quadratic model of the exact penalty function. The penalty parameter
is selected at every iteration so that the sufficient progress toward feasibility and optimality is guaranteed along the search
direction, which is called steering rules [11]. This requires that an auxiliary subproblem (a linear program) be solved in
certain cases. Byrd et al. [11] present a line search exact penaltymethod using steering rules, which requires that the penalty
function is descent sufficiently along the search direction at every iteration. However, the method presented here is very
different from Byrd’s method. The new method has two goals to determine whether the current iteration is successful or
not. One is improving the feasibility and the other is reducing the value of the objective function. The new method allows
for a certain amount of non-monotonicity on the objective function and on the measure of constraint violation compared to
a penalty function approach. Gould et al. [16] present a filter method for nonlinear optimization, where every trial step is
computed from subproblems that value reducing both the constraint violation and the objective function. The newmethod
does not use filter technique and its search direction is similar to Byrd et al. [11] but is different from Gould et al. [16].
Moreover, the penalty parameter is only related to the information at the current iterate point. The sequence of the penalty
parameter is non-monotone. This property does not affect the global convergence in theory and is seen to be advantageous
in practice. Byrd et al. [12] point out clearly that many of the failures caused by large values of the penalty parameter
seemed to occur because, near the feasible region, there are often small increases in infeasibility due to nonlinearities in
constraints or roundoff error in even linear constraints. Because of the large value of the penalty parameter, these increases
dominated the objective function improvement, and forced the penalty method to take very small steps, and sometimes
completely prevented further progress. To restrict using excessively large penalty parameter is valuable in practice, which
is also confirmed by the numerical examples in this paper.

This paper is divided into four sections. The next section describes the new algorithm. The well definedness of the
algorithm is analyzed in Section 3. In Section 4, we analyze the global convergence under the weaker assumptions. Finally,
numerical experiments are reported.

2. Description of algorithm

The new algorithm divides two parts. The first part will determine a search direction and the other part will provide a
strategy which judge the iteration to be successful or not. An appropriate choice of the penalty parameter will guarantee
that the search direction can improve the objective function or the measure of constraint violation. The choice of penalty
parameter and the determination of the search direction are similar to Byrd et al. [12]. For the convenience, we simply
describe it.

Consider the following unconstrained optimization with l1 exact penalty function

min
x∈Rn

P(x, σ ) = f (x) + σv(x), (2.1)

where, σ > 0 is a penalty parameter and

v(x) =


i∈I

[ci(x)]−,

where [ci(x)]− = max{0, −ci(x)}. v(x) means the measure of constraint violation.
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