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a b s t r a c t

In this paper, the Keller box finite-difference scheme is employed in tandem with the so-
called boundary immobilization method for the purposes of solving a two-phase Stefan
problem that has both phase formation and phase depletion. An important component
of the work is the use of variable transformations that must be built into the numerical
algorithm in order to resolve the boundary-condition discontinuities that are associated
with the onset of phase formation and depletion. In particular, this allows the depletion
time to be determined, and the solution to be computed after depletion. The method
gives second-order accuracy in both time and space for all variables throughout the entire
computation.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Phase-change, or Stefan, problems in which amaterial melts or solidifies occur in a wide variety of natural and industrial
processes, e.g. the evaporation of fuel droplets [1], the melting or freezing of spheres [2–10], the solidification of metal in
continuous casting processes [11–14]. Mathematically, these are special cases of moving-boundary problems, in which the
location of the front between the solid and liquid is not known beforehand, but must be determined as part of the solution.
Analytical solutions are available in only a very limited number of cases and in general numerical methods are necessary.
Furthermore, numerical methods are most often applied to only the part of the problem during which themoving boundary
exists. However, it is desirable to have a method which is able to give a solution for the entire problem, i.e. before phase
change starts, whilst it proceeds and after it finishes. Although the first and third stages simply constitute fixed-boundary
problems, and are therefore numerically less challenging than the second stage, an important issue is whether the accuracy
of any given numerical scheme is still preserved as we transfer from one stage to the next. Limiting the discussion to the
use of the formally second-order accurate Keller box scheme, which we have recently applied to a number of phase-change
problems [15–21], it is evident that accuracy is not preservedwithout specific precautions, since the onset of phase formation
or subsequent depletion will result in discontinuities in the boundary conditions.

In our earlier work [17], we considered the case of a one-dimensional non-classical two-phase Stefan problem in the
context of cooling heat transfer and solidification, posed on a semi-infinite spatial domain, in which the solid phase first
appears only after a finite delay time; this can occur if the phase change is caused by a heat-flux boundary condition,
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rather than the classical isothermal cooling boundary condition. A natural extension of this, which is more relevant to
actual applications, is a two-phase Stefan problem that is posed on a finite spatial domain; in this case, the liquid phase
that was initially present will deplete after a finite time, at the expense of the solid phase that was not initially present
at all. Although the earlier paper demonstrated how the accuracy of the applied numerical scheme could be preserved in
spite of the boundary-condition discontinuity at the onset of phase change, the situation now proposed leads to two new
complications:

• how to handle numerically the depleting phase;
• how to continue the integration after phase depletion.

We have considered the first issue on a number of occasions in the context of one-phase Stefan problems [18–20], for
which there is a finite extinction time for the whole problem; now, however, the situation is slightly different again, since
the other phase still remains and we will need to continue the numerical integration for that phase. As regards the second
issue,we have previously considered the case of boundary-condition discontinuities [21], but onlywhen the initial condition
was analytically prescribed; here, however, we effectively will need to compute the initial-like condition for the subsequent
post-depletion regime, and it is clear that any loss of accuracy in the pre-depletion computation is likely to propagate into
the post-depletion regime. The purpose of this paper is therefore to resolve these issues, in tandemwith the use of the Keller
box scheme. An additional distinction to [17] is that here we consider a fixed boundary condition, rather than a heat-flux
condition, which causes the solid phase to appear immediately.

The layout of the paper is as follows. In Section 2, we formulate and nondimensionalize a one-dimensional problem
for the solidification, due to a constant cooling temperature, of material of finite extent that is initially above its melting
temperature. In Section 3, we explain how the Keller box scheme, in tandem with the boundary immobilization method, is
applied to this particular problem. The results are then presented and discussed in Section 5, and conclusions are drawn in
Section 6.

2. Mathematical formulation

Consider the cooling of a liquid, occupying the region 0 < y < Y , that is initially at a temperature, Thot , which is greater
than its melting temperature, Tmelt , and is cooled at y = 0 for time t > 0 by prescribing a fixed temperature Tcold, where
Tcold < Tmelt < Thot . Solidification begins immediately with solid occupying the region 0 ≤ y ≤ ym(t) and the remaining
liquid occupying ym(t) < y < Y , where ym(t) denotes the location of the solidification front.

Assuming the material properties of the solid and liquid phases to be constant, the equations governing the subsequent
heat transfer are as follows. In the solid, we have

ρscps
∂Ts
∂t

= ks
∂2Ts
∂y2

, 0 < y < ym, (1)

where Ts is the solid temperature, ks is the thermal conductivity of the solid, cps is its specific heat capacity and ρs its density.
Also, the governing equation in the liquid is

ρlcpl
∂Tl
∂t

= kl
∂2Tl
∂y2

, ym < y < Y , (2)

where Tl is the liquid temperature, kl is the thermal conductivity of the liquid, cpl is its specific heat capacity andρl its density.
We assume henceforth for simplicity that ρl = ρs = ρ.

For boundary conditions, we have, at y = 0,

Ts = Tcold. (3)

Next, provided that ym < Y , we have, at y = ym,

Ts = Tl = Tmelt , (4)

and the Stefan condition

ρ1Hf
dym
dt

= ks
∂Ts
∂y

− kl
∂Tl
∂y

, (5)

where 1Hf is the latent heat of fusion. In addition, at y = Y , we have

∂Tl
∂y

= 0. (6)

However, once ym reaches Y , Eqs. (4)–(6) will be replaced by just

∂Ts
∂y

= 0 at y = Y . (7)
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