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a b s t r a c t

Numerical solution of Fredholm integral equation of second kind with weakly singular
kernel is obtained in this paper by employing Legendre multi-wavelet basis. The low- and
high-pass filters for two-scale relations involving Legendre multiwavelets having four or
five vanishingmoments of their wavelets have been derived and are used in the evaluation
of integrals for the multiscale representation of the integral operator. Explicit expressions
for the elements of the matrix associated with the multiscale representation are given. An
estimate for the Hölder exponent of the solution of the integral equation at any point in
its domain is obtained. A number of examples is provided to illustrate the efficiency of the
method developed here.
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1. Introduction

Integral equations arise in various problems of mathematical physics in a natural way and as such they play important
role in varieties of field of science and engineering [1–3]. Fredholm integral equation of the second kind with regular or
singular kernels constitute an important branch in such area. Investigations on mathematical techniques for getting exact
solution of such equations have been continued for a long time and reported in a number of literature [4–7]. However,
such results are not adequate for getting solutions of integral equations appearing in several types of physical problems.
Thus, investigations are continued simultaneously to find efficient approximation schemes which can provide approximate
solution as accurate as possible. There already exist several numerical schemes for getting approximate solution of integral
equations with singular kernels [8–19]. But in most of the cases the unknown function involved in the equation is expanded
in some orthogonal bases so as to reduce the integral equation to a system of linear simultaneous equations for the unknown
coefficients appearing in the truncated expansion of the function. However the matrices involved in the system of linear
equations are dense and their condition numbers are high, in general. As a result their computational costs are prohibitive.
Also the approximate solution when expanded in the basis consisting of classical orthogonal functions, often fails to provide
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local informations such as smoothness or regularity of the solutions, the error in the approximation in a straight forward
manner. It is thus desirable to search for an appropriate technique which can provide the information on the aforesaid local
behaviour or error in the approximationdirectly from the solution of the transferred algebraic equations at the expense of the
less computational cost. It is now known that the use of wavelet basis of somemultiresolution analysis(MRA) of underlying
space of functions in approximating solution of integral equations can provide such informations efficiently [20–27].

Multiresolution analysis (MRA) of function spaces in terms of refinable functions and wavelets with compact support
has significant applications in many areas of mathematical physics and engineering [28–32]. This can be attributed due to
its elegant role of mathematical microscopy in the analysis of smoothness or regularity of a function. The main advantages
of a numerical method involving expansion of the unknown function in terms of wavelets with compact support compared
to a classical method are that discretization of the domain involved is inbuilt in the technique due to the compact support
of the members in the basis and the resulting matrix is sparse due to vanishing moments of the wavelets. Consequently the
numerical scheme involving basis of MRA becomes highly stable and the related computation is economic.

Alpert [20], Alpert et al. [21] are pioneers in the development of generation of wavelets involving polynomials and they
used these to obtain numerical solutions of second kind integral equations with emphasis on logarithmically singular ker-
nels. In recent years, several numericalmethods for obtaining numerical solution of a Fredholm integral equation of the form

u(x)+ λ

 1

0

u(t)
|x − t|µ

dt = f (x), 0 < µ < 1, x ∈ [0, 1] (1.1)

where f : [0, 1] → R is the input function(known) and u is the output function(unknown), have been developed by a num-
ber of researchers [20,21,33,10,34–37]. Cai [37] observed that all existing numerical methods for solving weakly singular
integral equations are of two types. In the first type, the integral equation is converted into a new but somewhat compli-
cated integral equation possessing better regularity so as to be treated by some appropriate existingmethod [34]. The second
type is called a hybrid projection method which allows the projection subspaces to contain some known singular functions
[22,10]. Thismethod requires a special attention for the evaluation of integrals involving singular functions in the basis. Since
the basis (with compact support) of MRA of function spaces have inherent structure of regularization of singular functions,
it is quite natural to investigate whether numerical solution of singular integral equation in the wavelet basis can achieve
some additional benefits compared to existing classical methods.

In this paper Legendre multiwavelets have been used to solve a second kind Fredholm integral equation with weakly
singular kernel. Definition of Legendremultiwavelets, their two-scale relations and associated filter coefficients are given in
Section 2. Section 3 involves recurrence relations for integrals involving product of weakly singular kernels, scale functions
andwavelets, some representative values of these integrals are also presented. Section 4 presents multiscale approximation
of a function and multiscale representation of the weakly singular integral operator. In Section 5, the second kind integral
equation is reduced to a linear system of algebraic equations involving multiscale representation of the integral operator
and an estimate for Hölder exponent of the solution at any point within the domain is obtained. An error estimate for the
approximate solution is obtained in Section 6. The numerical method developed here is illustrated through a number of
examples in Section 7. Finally in Section 8 we present some concluding remarks including possible extension of the scheme
to some other mathematical problems.

2. Legendre multiwavelets

The scaling functions in Legendre multiwavelet bases consist of K component vectors

φi(x) := (2i + 1)
1
2 Pi(2x − 1), i = 0, 1, . . . , K − 1; 0 ≤ x ≤ 1 (2.1)

where Pi(x) is the Legendre polynomial of degree i (i = 0, 1, . . . , K − 1). At resolution j these are expressed as

φi
j,k(x) := 2

j
2 φi(2jx − k), j ∈ N (2.2)

where,N = {0, 1, 2, . . .} and suppφi
j,k(x) =


k
2j
, k+1

2j


. For a given j > 0, shifting or translation ofφi

j,k(x) is represented by the

symbol k

k = 0, 1, . . . , 2j

− 1

. In a particular resolution j, φi1

j,k1
(x) is orthogonal toφi2

j,k2
(x) for i1 ≠ i2, k1 ≠ k2 with respect

to the inner product ⟨f , g⟩ =
 1
0 f (x)g(x)dx. Apart from the usual recurrence relation (in n) for Pn(x)(viz. (n + 1) Pn+1(x)−

(2n + 1) x Pn(x)+ n Pn−1(x) = 0), the refinement equations or the two-scale relations among the scale functions φi
j,k(x) are

φi
j,k(x) =

1
√
2

K−1
r=0


h(0)i,r φ

r
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
=
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√
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h(s)i,r φ
r
j+1,2k+s(x). (2.3)
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