Some modified conjugate gradient methods for unconstrained optimization ${ }^{\star}$

Xuewu Du ${ }^{\text {a }}$, Peng Zhang ${ }^{\text {b,a,* }}$, Wenya Ma ${ }^{\text {a }}$
${ }^{\text {a }}$ School of Mathematical Sciences, Chongqing Normal University, Chongqing 401331, PR China
${ }^{\mathrm{b}}$ School of Management, Shanghai University, Shanghai 200444, PR China

ARTICLE INFO

Article history:

Received 8 August 2015
Received in revised form 26 March 2016

MSC:

90C30
90C25

Keywords:

Unconstrained optimization
Conjugate gradient method Line search
Sufficient descent property
Global convergence

Abstract

Conjugate gradient methods are highly useful for solving large scale optimization problems because they do not require the storage of any matrices. Motivated by the construction of conjugate gradient parameters in some existing conjugate gradient methods, we propose four modified conjugate gradient methods, named NVLS, NVPRP*, NVHS* and NVLS* respectively, and prove that these methods with the strong Wolfe line search possess sufficient descent property, and are globally convergent when the parameter in line search conditions is restricted in some suitable interval. Preliminary numerical results show that the NVPRP*, NVHS* and NVLS* methods are more efficient than many existing conjugate gradient methods for a large number of test problems from a CUTEr collection.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Consider the unconstrained optimization problem

$$
\begin{equation*}
\min f(x), \quad x \in R^{n} \tag{1}
\end{equation*}
$$

where $f: R^{n} \rightarrow R$ is a continuously differentiable function, and its gradient g is available.
Conjugate gradient methods are a class of important iterative methods for solving (1), especially if the dimension n is large. They are of the form

$$
\begin{equation*}
x_{k+1}=x_{k}+\alpha_{k} d_{k}, \tag{2}
\end{equation*}
$$

where $\alpha_{k}>0$ is a stepsize obtained by some line search technique, d_{k} is the search direction defined by

$$
d_{k}= \begin{cases}-g_{k}, & \text { if } k=0 \tag{3}\\ -g_{k}+\beta_{k} d_{k-1}, & \text { if } k \geq 1\end{cases}
$$

where g_{k} denotes the gradient $g\left(x_{k}\right)$ of f at x_{k}, the scalar β_{k}, called conjugate gradient parameter, is so chosen that (2)-(3) reduces to the linear conjugate gradient method in the case when $f(x)$ is a strictly convex quadratic function, and α_{k} is the exact one-dimensioned minimizer.

[^0]Some of the well-known nonlinear conjugate gradient methods are the Fletcher-Reeves (FR) [1], Polak-Ribière-Polyak (PRP) [2,3], Hestenes-Stiefel (HS) [4], Conjugate Descent (CD) [5], Liu-Storey (LS) [6] and Dai-Yuan (DY) [7] methods in which formulas for β_{k} are given, respectively, by

$$
\begin{array}{ll}
\beta_{k}^{\mathrm{FR}}=\frac{\left\|g_{k}\right\|^{2}}{\left\|g_{k-1}\right\|^{2}}, & \beta_{k}^{\mathrm{PRP}}=\frac{g_{k}^{T} y_{k-1}}{\left\|g_{k-1}\right\|^{2}},
\end{array} \beta_{k}^{\mathrm{HS}}=\frac{g_{k}^{T} y_{k-1}}{d_{k-1}^{T} y_{k-1}}, ~ \begin{array}{ll}
\beta_{k}^{\mathrm{CD}}=\frac{\left\|g_{k}\right\|^{2}}{-g_{k-1}^{T} d_{k-1}}, & \beta_{k}^{\mathrm{LS}}=\frac{g_{k}^{T} y_{k-1}}{-g_{k-1}^{T} d_{k-1}},
\end{array} \beta_{k}^{\mathrm{DY}}=\frac{\left\|g_{k}\right\|^{2}}{d_{k-1}^{T} y_{k-1}},
$$

where $\|\cdot\|$ denotes the Euclidean norm, and $y_{k-1}=g_{k}-g_{k-1}$.
Some convergence analyses of conjugate gradient methods require the stepsize α_{k} to be determined by the exact line search. However, since exact line search is usually expensive and impractical, inexact line searches are often used in convergence analyses and implementations of conjugate gradient methods. Inexact line searches include the Armijo, Goldstein, strong Wolfe, Wolfe, generalized Wolfe line searches and their variants. The strong Wolfe line search (SWLS) is to find an α_{k} satisfying

$$
\begin{equation*}
f\left(x_{k}+\alpha_{k} d_{k}\right) \leq f\left(x_{k}\right)+\delta \alpha_{k} g_{k}^{T} d_{k} \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|g\left(x_{k}+\alpha_{k} d_{k}\right)^{T} d_{k}\right| \leq-\sigma g_{k}^{T} d_{k}, \tag{5}
\end{equation*}
$$

where $0<\delta<\sigma<1$. The Wolfe line search (WLS) is to find an α_{k} satisfying (4) and

$$
\begin{equation*}
g\left(x_{k}+\alpha_{k} d_{k}\right)^{T} d_{k} \geq \sigma g_{k}^{T} d_{k} \tag{6}
\end{equation*}
$$

where again $0<\delta<\sigma<1$. The generalized Wolfe line search (GWLS), which was originally introduced by Dai and Yuan [8], is to find an α_{k} satisfying (4) and

$$
\begin{equation*}
\sigma_{1} g_{k}^{T} d_{k} \leq g\left(x_{k}+\alpha_{k} d_{k}\right)^{T} d_{k} \leq-\sigma_{2} g_{k}^{T} d_{k} \tag{7}
\end{equation*}
$$

where $0<\delta<\sigma_{1}<1$ and $\sigma_{2} \geq 0$. Obviously, (5) can be viewed as a special case of (7) with $\sigma_{1}=\sigma_{2}=\sigma$, and (6) as a special case of (7) with $\sigma_{1}=\sigma$ and $\sigma_{2}=+\infty$.

A requirement for an optimization method to use the above line searches is that, all search directions must have the descent property, that is,

$$
\begin{equation*}
g_{k}^{T} d_{k}<0 \tag{8}
\end{equation*}
$$

for all k. In this paper, we say that, a conjugate gradient method is descent or possesses the descent property if the descent condition (8) holds for all k, and it is sufficient descent or possesses the sufficient descent property if there exists some constant $c>0$ such that the sufficient descent condition

$$
\begin{equation*}
g_{k}^{T} d_{k} \leq-c\left\|g_{k}\right\|^{2} \tag{9}
\end{equation*}
$$

holds for all k. The sufficient descent condition (9) is often used to analyze the global convergence of nonlinear conjugate gradient methods.

To simplify the statements of the theoretical analyses and results, we always assume that $g_{k} \neq 0$ for all k, for otherwise a stationary point has been found. Assume also that $\beta_{k} \neq 0$ for all k. This is because if $\beta_{k}=0$, the direction d_{k} in (3) reduces to the negative gradient direction. Thus, either the method converges globally if $\beta_{k}=0$ for infinite number of k, or one can take some x_{k} as the new initial point. In addition, we say that a method is globally convergent if

$$
\begin{equation*}
\liminf _{k \rightarrow \infty}\left\|g_{k}\right\|=0 \tag{10}
\end{equation*}
$$

In practical computations, if the FR method generates a bad direction and a tinny step from x_{k-1} to x_{k}, the next direction and the next step are also likely to be poor unless a restart along the negative gradient direction is performed (see [9]). In spite of such a drawback, it has been shown that the FR method has nice theoretical convergence properties (see [10-13,8]). In addition, by using the technique in [8], Du and Xu [14] investigated the methods of the form (2)-(3) with β_{k} satisfying

$$
\begin{equation*}
0 \leq \beta_{k} \leq \beta_{k}^{\mathrm{FR}} \tag{11}
\end{equation*}
$$

They showed that any method (2)-(3) with β_{k} satisfying (11) possesses the descent property, and is globally convergent if the GWLS (4) and (7) with $\sigma_{1}+\sigma_{2} \leq 1$ is used. The numerical performances of the CD and DY methods are very similar to the FR method since the scalar β_{k} in these two methods have the same numerator as the FR method.

The PRP method performs much better than the FR method for many optimization problems because it can automatically recover once a small step is generated (see [9]). The numerical performances of the HS and LS methods are very similar to the PRP method since the scalar β_{k} in these methods have the same numerator. Nevertheless, the theoretical convergence

https://daneshyari.com/en/article/4638022

Download Persian Version:
https://daneshyari.com/article/4638022

Daneshyari.com

[^0]: th This work is partially supported by the Natural Science Foundation of China (Grant 11171363) and the Natural Science Foundation of Chongqing (Grants cstc2015jcyjBX0029, cstc2013jjB00001, cstc2013jcyjA00021).

 * Corresponding author at: School of Management, Shanghai University, Shanghai 200444, PR China. Tel.: +86 02365362798 ; fax: +86 02365362798.

 E-mail address: zhangpeng_9001@126.com (P. Zhang).

