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a b s t r a c t

Conjugate gradientmethods are highly useful for solving large scale optimization problems
because they do not require the storage of any matrices. Motivated by the construction of
conjugate gradient parameters in some existing conjugate gradient methods, we propose
four modified conjugate gradient methods, named NVLS, NVPRP*, NVHS* and NVLS*
respectively, and prove that these methods with the strong Wolfe line search possess
sufficient descent property, and are globally convergent when the parameter in line search
conditions is restricted in some suitable interval. Preliminary numerical results show that
the NVPRP*, NVHS* and NVLS* methods are more efficient than many existing conjugate
gradient methods for a large number of test problems from a CUTEr collection.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Consider the unconstrained optimization problem

min f (x), x ∈ Rn, (1)

where f : Rn
→ R is a continuously differentiable function, and its gradient g is available.

Conjugate gradient methods are a class of important iterative methods for solving (1), especially if the dimension n is
large. They are of the form

xk+1 = xk + αkdk, (2)

where αk > 0 is a stepsize obtained by some line search technique, dk is the search direction defined by

dk =


−gk, if k = 0;
−gk + βkdk−1, if k ≥ 1, (3)

where gk denotes the gradient g(xk) of f at xk, the scalar βk, called conjugate gradient parameter, is so chosen that (2)–(3)
reduces to the linear conjugate gradient method in the case when f (x) is a strictly convex quadratic function, and αk is the
exact one-dimensioned minimizer.
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Some of the well-known nonlinear conjugate gradient methods are the Fletcher–Reeves (FR) [1], Polak–Ribière–Polyak
(PRP) [2,3], Hestenes–Stiefel (HS) [4], Conjugate Descent (CD) [5], Liu–Storey (LS) [6] and Dai–Yuan (DY) [7] methods in
which formulas for βk are given, respectively, by

βFR
k =

∥gk∥2

∥gk−1∥
2
, βPRP

k =
gTk yk−1
∥gk−1∥2

, βHS
k =

gT
k yk−1

dTk−1yk−1
,

βCD
k =

∥gk∥2

−gT
k−1dk−1

, βLS
k =

gTk yk−1

−gTk−1dk−1
, βDY

k =
∥gk∥2

dTk−1yk−1
,

where ∥ · ∥ denotes the Euclidean norm, and yk−1 = gk − gk−1.
Some convergence analyses of conjugate gradient methods require the stepsize αk to be determined by the exact

line search. However, since exact line search is usually expensive and impractical, inexact line searches are often used
in convergence analyses and implementations of conjugate gradient methods. Inexact line searches include the Armijo,
Goldstein, strong Wolfe, Wolfe, generalized Wolfe line searches and their variants. The strong Wolfe line search (SWLS) is
to find an αk satisfying

f (xk + αkdk) ≤ f (xk) + δαkgT
k dk (4)

and

|g(xk + αkdk)Tdk| ≤ −σgT
k dk, (5)

where 0 < δ < σ < 1. The Wolfe line search (WLS) is to find an αk satisfying (4) and

g(xk + αkdk)Tdk ≥ σgT
k dk, (6)

where again 0 < δ < σ < 1. The generalized Wolfe line search (GWLS), which was originally introduced by Dai and
Yuan [8], is to find an αk satisfying (4) and

σ1gT
k dk ≤ g(xk + αkdk)Tdk ≤ −σ2gT

k dk, (7)

where 0 < δ < σ1 < 1 and σ2 ≥ 0. Obviously, (5) can be viewed as a special case of (7) with σ1 = σ2 = σ , and (6) as a
special case of (7) with σ1 = σ and σ2 = +∞.

A requirement for an optimization method to use the above line searches is that, all search directions must have the
descent property, that is,

gT
k dk < 0 (8)

for all k. In this paper, we say that, a conjugate gradient method is descent or possesses the descent property if the descent
condition (8) holds for all k, and it is sufficient descent or possesses the sufficient descent property if there exists some constant
c > 0 such that the sufficient descent condition

gT
k dk ≤ −c∥gk∥2 (9)

holds for all k. The sufficient descent condition (9) is often used to analyze the global convergence of nonlinear conjugate
gradient methods.

To simplify the statements of the theoretical analyses and results, we always assume that gk ≠ 0 for all k, for otherwise
a stationary point has been found. Assume also that βk ≠ 0 for all k. This is because if βk = 0, the direction dk in (3) reduces
to the negative gradient direction. Thus, either the method converges globally if βk = 0 for infinite number of k, or one can
take some xk as the new initial point. In addition, we say that a method is globally convergent if

lim inf
k→∞

∥gk∥ = 0. (10)

In practical computations, if the FR method generates a bad direction and a tinny step from xk−1 to xk, the next direction
and the next step are also likely to be poor unless a restart along the negative gradient direction is performed (see [9]). In
spite of such a drawback, it has been shown that the FRmethod has nice theoretical convergence properties (see [10–13,8]).
In addition, by using the technique in [8], Du and Xu [14] investigated the methods of the form (2)–(3) with βk satisfying

0 ≤ βk ≤ βFR
k . (11)

They showed that any method (2)–(3) with βk satisfying (11) possesses the descent property, and is globally convergent if
the GWLS (4) and (7) with σ1 + σ2 ≤ 1 is used. The numerical performances of the CD and DY methods are very similar to
the FR method since the scalar βk in these two methods have the same numerator as the FR method.

The PRPmethod performsmuch better than the FRmethod formany optimization problems because it can automatically
recover once a small step is generated (see [9]). The numerical performances of the HS and LS methods are very similar to
the PRP method since the scalar βk in these methods have the same numerator. Nevertheless, the theoretical convergence
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