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a b s t r a c t

The paper presents a new numerical method for solving eigenvalue problems for fractional
differential equations. It combines two techniques: the method of external excitation
(MEE) and the backward substitutionmethod (BSM). The first one is amathematical model
of physical measurements when a mechanical, electrical or acoustic system is excited
by some source and resonant frequencies can be determined by using the growth of the
amplitude of oscillations near these frequencies. The BSM consists of replacing the original
equation by an approximate equation which has an exact analytic solution with a set
of free parameters. These free parameters are determined by the use of the collocation
procedure. Some examples are given to demonstrate the validity and applicability of the
new method and a comparison is made with the existing results. The numerical results
show that the proposed method is of a high accuracy and is efficient for solving of a wide
class of eigenvalue problems.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In this paper we present a novel method for solving fractional eigenvalue problems of the second order:

L [u] + λp (x) u(x) ≡ α (x)D(ν)u(x) +

K
k=1

βk (x)D(νk)u(x) + λp (x) u(x) = 0, 0 ≤ x ≤ 1, (1)

a0u (0) + a1u(1) (0) = 0, b0u (1) + b1u(1) (1) = 0, (2)

where 1 < ν ≤ 2, 0 < νk ≤ 1, the coefficients α (x), βk (x), p (x) are known smooth enough functions and a0, a1, b0, b1 are
appropriate constants.

Throughout the paper we consider the fractional Caputo derivatives which are defined as follows [1–3]:

D(ν)f (x) =


1

Γ (n − ν)

 x

0

f (n) (t)
(x − t)ν−n+1 , n − 1 < ν < n,

f (n) (x) , ν = n,
, (3)
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where n ∈ N = {1, 2, . . .} is the set of positive integers and Γ (z) denotes the gamma function. In particular for power
functions we get:

D(ν)xp =


0, if p ∈ N0 and p < n,

Γ (p + 1)
Γ (p + 1 − ν)

xp−ν, if p ∈ N0 and p ≥ n or p ∉ N0 and p > n − 1,
(4)

where N0 = {0, 1, 2, . . .} is the set of nonnegative integers. This formula is widely used throughout the paper.
Fractional differential equations and fractional integro-differential equations arise in various areas of science and

engineering. The advantages of FDEs become apparent in modeling electrical properties of real materials, as well as in
description of blood flow, and in many other fields (see, for example, [4,5] and references cited therein). Due to the
growing applications considerable attention has been given to the numerical solutions of FDEs. The review of the numerical
techniques developed in the early 2000s can be found in [1].

The shifted Chebyshev and Jacobi polynomials are used for approximation of the solution in the methods developed in
[6–8]. The polynomial approximation is used there together with tau and collocation spectral methods to find an
approximate solution formulti-term linear and nonlinear FDEs. A similar technique based on the use of the shifted Legendre
polynomials was introduced by Bhrawy et al. in [9] for solving multi-order fractional differential equations with constant
coefficients. The collocation-shooting method for solving fractional boundary value problems of the second order was
proposed in [10]. In [11] the method based on the Legendre wavelet operational matrix of fractional order integrations was
applied for solving FDEs by Rehman and Khan. The direct solution technique for multi-order FDEs with variable coefficients
using the quadrature shifted Legendre taumethodwas developed in [12]. Maleki et al. proposed an adaptive pseudospectral
method for solving a class of multiterm fractional boundary value problems in [13]. Pedas and Tamme developed the spline
collocation methods for solving FDEs in [14–16]. A modification of this technique was proposed by Kolk et al. in [17]. A
nonpolynomial collocation method for solving a class of initial and boundary value problems was proposed in [18,19]. This
technique is based on the transformation of the original problem into the integral equation of the Volterra and Fredholm
type. A spectral collocation method applying the Bessel functions was proposed by Parand and Nikarya in [20] for solving
FDEs and FIDs. In [21] Rehman and Khan proposed a numerical scheme, based on the Haar wavelet operational matrices for
solving linear multi-point BVPs for FDEs. Recently, the reproducing kernel method was proposed by Li and Wu for solving
FDEwith nonlocal boundary conditions [22]. In [23] Rawashdeh studied the numerical solution of FIDEs by polynomial spline
functions. The collocation method based on the use of the operational matrix of derivative for general Jacobi’s orthogonal
polynomials was proposed by Eslahchi et al. in [24] for solving nonlinear FIDEs. A similar approach based on the use of
the Legendre wavelets operational matrix method was proposed by Meng et al. in [25]. The method which is based on the
truncated Taylor expansions for solving linear FIDEs of the Fredholm type was proposed in [26].

At the same time only a few number of papers are devoted to fractional eigenvalue problems. The method of solution
based onutilizing the series solutionwas proposed byHajji et al. in [27]. The FDE is converted into a linear systemof algebraic
equations and then the eigenvalues are calculated as roots of the characteristic polynomial. The Adomian decomposition
method and the homotopy analysis method were proposed by Al-Mdallal for this goal in [28,29] correspondingly. The
homotopy analysis method for fractional Sturm–Liouville eigenvalue problems was also proposed by Abbasbandy and
Shirzadi in [30]. The eigenvalue problems for the FDEs D(ν)u(x) + λu(x) = 0, 0 < ν ≤ 2 with different classes of boundary
conditionswere investigated in detail in [31] byDuan et al. by using the general solutions and the theory of theMittag-Leffler
functions. Recently the augmented-RBF method has been proposed to solve fractional eigenvalue problems by Antunes and
Ferreira in [32].

For solving the eigenvalue problem (1), (2) we combine two techniques: the method of external excitation (MEE) [33,34]
and the backward substitution method (BSM) [35,36].

Let us consider the eigenvalue problem

L [u] + λp(x)u = 0, B0 [u(0)] = 0, B1 [u(1)] = 0, (5)

where L [. . .] is a linear differential operator and B0 [. . .], B1 [. . .] are operators of the boundary conditions. Let ue (x) be a
smooth enough function defined in the interval [0, 1] named below as the exciting field. If the response field ur (x) is a solution
of the following boundary value problem (BVP)

L [ur ] + λp(x)ur = −L [ue] − λp(x)ue, (6)
B0 [ur(0)] = −B0 [ue(0)] , B1 [ur(1)] = −B1 [ue(1)] , (7)

then the sum u (x, λ) = ur + ue satisfies the initial problem (5). Let F (λ) be some norm of the solution u (x). This function
of λ has maxima at the eigenvalues and, under some conditions described below, can be used for their determining. The
MEE technique is convenient for determining some first eigenvalues of the system which are often of the most interest for
engineering applications. Applying it, we transform the original fractional eigenvalue problem (1), (2) into a sequence of
fractional boundary value problems (FBVPs) (6), (7), which depend on the spectral parameter λ. So, an effective method for
solving the FBVPs should be offered. The method presented in the paper for this goal is a development of the numerical
technique proposed earlier in [35,36]. The general scheme is as follows. Let us write the governing FDE in the form:

L [u] = F (x, u) , (8)
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