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h i g h l i g h t s

• We present a monotone FEM scheme for a convection–diffusion–reaction problem in 2, 3D.
• The considered equation does not possess an underlying maximum principle.
• Sufficient conditions are given to ensure the nonnegativity of the approximations.
• Numerical examples confirm the necessity and sufficiency of the conditions.
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a b s t r a c t

An affine finite element scheme approximation of a time dependent linear convec-
tion–diffusion–reaction problem in 2D and 3D is presented. For these equations which do
not satisfy an underlying maximum principle, sufficient conditions are given in terms of
the coefficient functions, the computational grid and the discretization parameters to en-
sure that the nonnegativity property of the true solution is also satisfied by its approxi-
mation. Numerical examples are given which confirm the necessity and sufficiency of the
discretization conditions to guarantee the nonnegativity of the approximation.
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1. Introduction

In this paper we consider the finite element approximation of the linear convection–diffusion–reaction problem:
Determine u(x, t) satisfying

∂u(x, t)
∂t

− ∇ · a(x, t)∇u(x, t)+ b(x, t) · ∇u(x, t)+ g(x, t)u(x, t) = f (x, t), (x, t) ∈ Ω × (0, T ], (1.1)

u(x, t) = 0, (x, t) ∈ ∂Ω × (0, T ], (1.2)

u(x, 0) = u0(x), x ∈ Ω, (1.3)

whose well-posedness in the sense of the existence of a classical solution can be found in [1, Theorem 10 p. 206].
Such equations arise in modeling many physical phenomena. Often the unknown quantity u in (1.1)–(1.3) represents a
nonnegative physical quantity. In such cases, it is highly desirable that the numerical approximation tou also be nonnegative.
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This paper distinguishes itself by proposing a numerical scheme which preserves the nonnegativity of the solution to the
fairly general convection–diffusion–reaction equation (1.1) which does not possess an underlying maximum principle.
Moreover, the provided proof brings together the 2D and 3D setting into a single framework, allowing for a simple
verification of the computational parameters required to guarantee the nonnegativity of the numerical approximations. Our
interest in this problem is motivated by the finite element approximation of the generalized (nonlinear) Burgers–Huxley
equation [2], a model that arises in several fields. For example, in electrodynamics, the Burgers–Huxley equation describes
the motion of the domain wall of a ferroelectric material in an electric field [3], in biology it is used to model the nerve
pulse propagation in nerve fibers [4], and it is also used as a prototype model in the study of interactions between diffusion
transport, convection and reaction [5].

For the system of equations (1.1)–(1.3) we assume Ω ⊂ Rd, d = 2, 3, is a bounded domain, a(x, t) ∈ L∞((0, T );
L∞(Ω)), 0 < amin ≤ a(x, t) ≤ amax, b(x, t) ∈ L∞((0, T ),H1(Ω)), g(x, t), f (x, t) ∈ L∞((0, T ); L∞(Ω)) and u0(x) ∈

L2(Ω), u0(x) ≥ 0. It is straightforward to show that under the additional assumption of smooth coefficients and εg + f > 0
inΩ×[0, T ] for all ε ∈ (0, ε0), the classical solutionu(x, t) is nonnegative [6]. This is the content of the followingproposition.

Proposition 1. Let u0 ≥ 0 and all the functions arising in (1.1) be smooth, with the additional constraint that εg + f > 0 for all
ε ∈ (0, ε0). Then, u(x, t) ≥ 0 for all (x, t) ∈ Ω × [0, T ].

Proof. Rewriting (1.1) as

∂u(x, t)
∂t

− a(x, t)∆u(x, t) = f (x, t)− g(x, t)u(x, t)+ ∇a(x, t) · ∇u(x, t)− b(x, t) · ∇u(x, t), (1.4)

one can proceed by contradiction by choosing t = t0 to be the first time when u attains the value u(x0, t0) = −ε for
some ε ∈ (0, ε0) and x0 ∈ Ω . This implies that u(x0, t0) = min(x,t)∈Ω×[0,t0] u(x, t). Thus, one can conclude that the
left hand side of (1.4) is nonpositive, while the right hand side is positive since all the spatial derivatives vanish and
f − u(x0, t0) g = f + εg > 0 by assumption. Therefore, we get a contradiction which implies that the function u could
not have attained a negative value. �

Hence, it is important for physical relevance, that under such conditions the numerical approximation also should be
nonnegative onΩ .

Over the years there has been considerable work done on numerical approximation schemes for elliptic and parabolic
differential equations that inherit a maximum principle satisfied by the continuous equation being approximated. Here
we refer to an equation as satisfying a maximum principle if the maximum of the solution (approximation) can be
bounded by the maximum of the initial data, the boundary data, and a constant multiple of the right hand side function
(See [7, Def. 2.1]). The following definition makes the previous statement precise.

Definition 1. Define C = C1((0, T ); C2(Ω)). For u ∈ C set f to be the corresponding function that arises after evaluating u
in (1.1). Let t ∈ (0, T ) and define the following sets: Qt = Ω × (0, t],Γt = (∂Ω × [0, t]) ∪ (Ω × {0}). We say that (1.1)
satisfies a maximum principle if

min
Γt

u + t min

0, inf

Qt
f


≤ u(x, t) ≤ max
Γt

u + t max

0, sup

Qt

f


(1.5)

holds for all u ∈ C and (x, t) ∈ Ω×(0, T ). Additionally, we say that u is nonnegative if u(x, t) ≥ 0 for all (x, t) ∈ Ω×[0, T ].

In such caseswhere amaximumprinciple holds, the nonnegativity of the solution (approximation) typically follows from
the nonnegativity of the data. The equivalence of having the (discrete) nonnegative property and a (discrete) maximum
principle has been studied in [7].

Under the assumptions stated above for the parameters in (1.1), Eq. (1.1) does not satisfy an underlying maximum
principle as given in Definition 1. To illustrate that, letΩ = (0, 1) × (0, 1) ⊂ R2, x = (x1, x2) and consider the following
linear partial differential equation

∂u(x, t)
∂t

−∆u(x, t)− au(x, t) = f (x, t), (x, t) ∈ Ω × (0, T ),

u(x, 0) = sin(πx1) sin(πx2), x ∈ Ω,

u(x, t) = 0, (x, t) ∈ ∂Ω × (0, T ),

where a > 0. Setting a = 2π2
+ 1 and f (x, t) = 0 implies that the C∞((0, T ); C∞(Ω)) solution is the nonnegative function

u(x, t) = sin(πx1) sin(πx2) exp(t), whose maximum occurs in the interior. However, the maximum cannot be bounded
using (1.5).

Herein we determine sufficient conditions on the temporal and spatial discretization parameters,∆t and h, respectively,
such that the computed approximation is nonnegative. In the following, we give a brief summary of recent work on discrete
maximum principles for the approximation of elliptic and parabolic differential equations. A detailed description of the
development in this area is given in [8,9].
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