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a b s t r a c t

The aim of this work is to investigate the application of partial moment approximations
to kinetic chemotaxis equations in one and two spatial dimensions. Starting with a kinetic
equation for the cell densities we apply a half-/quarter-moments method with different
closure relations to derive macroscopic equations. Appropriate numerical schemes are
presented as well as numerical results for several test cases. The resulting solutions are
compared to kinetic reference solutions and solutions computed using a full moment
method with a linear superposition strategy.
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1. Introduction

Themigration of cells is a complex process that is influenced bymany factors such as external light, the pH or the oxygen
concentration. In the following we concentrate on chemotaxis, the movement of cells in response to a chemical stimulus.
A substance which causes cells to move in the direction of its gradient is called chemoattractant. The ideas of this work
can easily be extended to chemorepellents, which have the opposite effect. Chemotaxis plays an important role in a lot of
biological processes: It drives the movement of bacteria towards food and away from poisons or leads the sperm in the
direction of the egg during fertilization. In multi-cellular organisms, it controls the guided accumulation of cells during
embryological development and the movement of lymphocytes in the process of immunological response [1–3]. During
cancer metastasis, mechanisms that allow chemotaxis can be subverted. Therefore a better understanding of the associated
processesmay lead to the development of novel therapeutic strategies. Themovement ofmany bacteria, such as Escherichia
coli which has been studied and described most intensely, is controlled by the alignment of their flagella, whip-shaped
appendices with a rotary motor at their bases that are embedded in the cell membrane. Counter-clockwise rotation aligns
the flagella, causing the bacterium to swim in a straight line (‘‘run phase’’); clockwise rotation causes the flagella to point in
different directions, resulting in amovement on the spot (‘‘tumble phase’’). The latter re-orients the bacterium, so that overall
we observe a randomwalk [4,5]. A chemical stimulus influences themotion in the following way: if receptors sense that the
bacterium ismoving in the direction of the chemoattractant gradient, the ‘‘run phase’’ will be extended; if the concentration
of the chemoattractant is decreasing in the direction of movement, it will be shortened. This results in a biased random
walk [2]. Consideration of additional effects on the chemoattractant, such as production by the bacteria themselves, decay
and diffusion, further increases the complexity of the model.

The original equations to model chemotaxis are the Keller–Segel equations. These equations have been intensively
investigated, see for example [6–9] for a phenomenological, [1,10,11,3] for a kinetic and micro–macro derivation, and
[12–17] for a qualitative analysis of its solutions. For a survey and an extended reference list, see for example [10].
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Our starting point is the classical kinetic chemotaxis equation [2]. Scaling it with the so called diffusive scaling leads to
the Keller–Segel equation, see [2]. In general, the derivation of Keller–Segel type models, including flux-limited diffusion
models and Fokker–Planck type models, from underlying kinetic or microscopic models is discussed for example in
[10,18,2]. In particular, using moment closure approaches one may obtain macroscopic equations intermediate between
kinetic and Keller–Segel equations, see the above mentioned references or [19,7]. First order full moment equations with
a linear closure function are sometimes called the Cattaneo equations. Applying maximum entropy closures one obtains
improved first order full momentmodels [20]. Half- and quarter-moment closures have been developed for kinetic radiative
transfer equations in [21,22]. It has been shown for these applications in various numerical experiments that the partial
moment methods yield macroscopic models that can produce satisfying approximations. We refer to [21].

The aim of this work is to investigate the application of partial moment approximations to kinetic chemotaxis equations
in one and two dimensions. Starting with a kinetic equation for the cell densities we apply a half- and quarter-moment
methodwith varying closure relations to derivemacroscopic equations in Section 2. By applying numerical schemes that use
certain properties of the moment systems and implementing it using Matlab [23], we obtain numerical results for several
different test cases. Moreover, we compare the results to kinetic reference solutions and solutions computed using a full
momentmethod and a linear superposition strategy. This work should be seen as a first step towards an efficient simulation
strategy for kinetic chemotaxis equations via further refinement of the sphere, leading from a quarter moment model to a
general first-order partial-moment model, which will hopefully converge to the true kinetic solution with a small number
of refinements. This strategy should yield similar results as higher order moment methods while being numerically much
more efficient due to the inherent structure of the first order partial moment models.

2. Chemotaxis equations

The dynamics of chemotaxis can be modelled by the kinetic equations

∂t f + v · ∇xf = −λ(f − CVρ) + CVαρv · Φ(∇m), (2.1)
∂tm − Dm∆xm = βρ − δm, (2.2)

where f (t, x, v) is the density of cells at time t and location x ∈ Rd, with velocity v ∈ V , whereas ρ(t, x) =

V f dv describes

the overall density of cells at time t and location x.m(t, x) is the concentration of the chemoattractant at time t and location
x. V is the set of admissible velocities; since we assume that the cells move in arbitrary directions, but with constant speed,
we have V = S2 = {v ∈ R3

| ∥v∥2 = 1} in three dimensions and consider the projections V = [−1, 1] in one and
V = B1(0) = {v ∈ R2

| ∥v∥2 ≤ 1} in two dimensions [11]. The normalization constant CV is determined by V : CV =
1
2 in

one and CV =
1
4π in two dimensions. The remaining coefficients characterize the biological system: λ and α describe the

diffusivity and the chemotactic sensitivity of the cells. Dm is the diffusivity, β the production rate by the cells and δ the rate
of chemical decay of the chemoattractant. The function Φ acts as a limiter for the influence of the chemoattractant gradient
∇m, which models the fact, that the ‘‘run phase’’ can only be extended to a certain extent. In the following we use

Φ(x) =




∥x∥ − s
1 + (∥x∥ − s)2

+ s


x

∥x∥
∥x∥ ≥ s,

x ∥x∥ ≤ s,

where the parameter s ≥ 0 determines the extent of the limiting: max(∥Φ(x)∥) ≤ s+1. Using this limiter in our simulation
prevents blow up of the solution in finite time [15].

Assuming that λ ≥ CVα (s + 1), the right-hand side of (2.1) can be written in the turning-kernel representation with
non-negative kernel, which ensures that (2.1) admits a non-negative solution f [2].

We note that Eq. (2.1) is related via a diffusive scaling limit t → ϵ2t and x → ϵx to a special case of the general
Patlak–Keller–Segel

∂tρ −
1
3λ

∆xρ = −
α

3λ
∇x · (ρΦ(∇m)).

See [24] or [2] for details and rigorous proofs.

3. Moment models

In this section we introduce the method of moments and explore how it can be used to derive macroscopic equations
from our kinetic equation (2.1). It can be seen as a Galerkin approximation in the velocity component v, by projecting the
kinetic density f (t, x, v) in v onto a finite-dimensional subspace of L2(V , R). Assume that this subspace is spanned by the
basis b : V → Rn, moments of f are defined as

u(t, x) =


V
b(v)f (t, x, v) dv =: ⟨bf ⟩ ,
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