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a b s t r a c t

We study the construction of a non-standard finite differences numerical scheme for a gen-
eral class of two dimensional differential equations including several models in population
dynamics using the idea of non-local approximation introduced by R. Mickens. We prove
the convergence of the scheme, the unconditional, with respect to the discretization pa-
rameter, preservation of the fixed points of the continuous system and the preservation
of their stability nature. Several numerical examples are given and comparison with usual
numerical scheme (Euler, Runge–Kutta of order 2 or 4) is detailed.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Differential equations are in general difficult to solve and study. In particular, for most of them we do not know explicit
solutions. As a consequence, one is led to perform numerical experiments using some ‘‘integrators’’ such as the Euler or
Runge–Kutta numerical scheme. The construction of these methods is based on approximation theory and focus on the way
to produce finite representation of functions. Although crucial to obtain good agreements between a given solution and its
approximation, it is far from being sufficient. Indeed, these numerical methods produce artefacts, i.e. numerical behaviour
which is not present in the given model. Examples of these artefacts are: creation of ghost equilibrium points, change in the
stability nature of existing equilibrium point or destruction of domain invariance, etc.

These issues are of course of fundamental importance and there is a way to solve it. Indeed, the artefacts produced by
classical numerical methods are related to the non persistence of some important features of the dynamics generated by the
differential equation. In particular, the qualitative theory of differential equations ismainly concernedwith invariant objects
such as equilibrium points and their dynamical properties such as stability or instability as well as other global properties
such as domain invariance and variational structures. Therefore, an idea emerged to construct numerical schemes that do
not focus on the approximation problems but dealwith somedynamical information leading towhat can be called qualitative
dynamical numerical scheme.

This programwas in fact mainly developed by R. Mickens in a series of papers (see [1–3]). In order to distinguish the new
numerical scheme from the classical one, he coined the term nonstandard schemes for them.
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The aim of this paper is to introduce a nonstandard scheme concerning a class of differential equations that include all
prey–predator models. The study of nonstandard scheme for prey–predator models is extensive but has been done only
with specific form of the differential equations (see [4–6]). Our results generalize the one obtained by D.T. Dimitrov and H.V.
Kojouharov in [4] and related works discussed in [7–9].

Precisely, we give a complete answer to the following questions and problems:

• Is the non-standard scheme convergent?
• For which value of the time step increment, do we recover the stability of the fixed points?
• To give a comparison between the numerical results obtained using the non-standard scheme and other well known

methods (such as Euler, Runge–Kutta 2 or Runge–Kutta 4).

To our knowledge, these questions and problems are not solved in the previous cited paper. In this article, we prove
convergence of the non-standard scheme which is constructed. A comparison between our scheme and Euler, Runge–Kutta
2 and 4 is also given. Precisely, classical problems related to the behaviour of these schemes with respect to equilibrium
points, stability and positivity are discussed with respect to the time step increment. Such a comparison is not provided in
the existing literature. Moreover, we prove that two of the third class of equilibrium points are preserved unconditionally
with respect to the time-step increment. In comparison, in [7–9], the authors obtain only stability for a sufficiently small
time-step which in fact follows directly from standard arguments in dynamical systems theory (see Section 6.4).

The plan of the paper is as follows:
In Section 2, we recall classical definitions of equilibrium points and their stability for discrete and continuous dy-

namical systems. Section 3 gives the definition of a non-standard finite difference scheme following R. Anguelov and
J.M-S. Lubuma [10,11]. In Section 4, we introduce the class of two dimensional differential equations that we are considering
and we study the positivity and the stability of the equilibrium points of this class of differential equations. In Section 5, we
introduce the non-standard scheme associated to this system with results about the preservation of stability and positivity
of the initial problem. In Section 6, we illustrate numerically the results on different models. Section 7 concludes the paper
and provides some perspectives and comments.

2. Reminder about continuous/discrete dynamical systems

In this section, we remind classical results about continuous and discrete dynamical systems dealing with the qualitative
behaviour of ordinary differential equations which will be studied both for our class of models and their discretization. We
refer in particular to the book of S. Wiggins [12] for more details and proofs.

2.1. Vector fields

2.1.1. Equilibrium points and stability
Consider a general autonomous differential equation

dx(t)
dt

= f (x(t)), x ∈ Rn, (1)

where f ∈ C2(Rm, Rm) is called the vector fields associated to (1).
An equilibrium solution of (1) is a point E ∈ Rn such that f (E) = 0. We denote by F the set of equilibrium points of (1).
An important issue is to understand the dynamics of trajectories in the neighbourhood of a given equilibrium point. This

is done through different notions of stability. In our model, we will use mainly the notion of asymptotic stability which is a
stronger notion than the usual Liapounov stability.

Definition 2.1 (Liapounov Stability). A solution x(t) of (1) is said to be stable if, given ϵ > 0, there exists δ = δ(ϵ) > 0 such
that, for any other solution, y(t), of (1) satisfying ∥x(t0) − y(t0)∥ < δ, then ∥x(t) − y(t)∥ < ϵ for t > t0, t0 ∈ R.

Our main concern will be asymptotic stability.

Definition 2.2 (Asymptotic Stability). A solution x(t) of (1) is said to be asymptotically stable if it is Liapounov stable and for
any other solution, y(t), of (1), there exists a constant δ > 0 such that if ∥x(t0)−y(t0)∥ < δ, then limt→+∞ ∥x(t)−y(t)∥ = 0.

For an equilibrium E, an important result is that asymptotic stability can be determined from the associated linear system
defined by

dy
dt

= Df (E)y, (2)

where Df (E) is the Jacobian of f evaluated at point E.
Precisely, we have (see [12], Theorem 1.2.5 p. 11):
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