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a b s t r a c t

The so-called delayed recruitment/renewal equation provides themathematicalmodel in a
diverse spectrum of practical applications andmay become singularly perturbed when the
time-lag is large relative to the reciprocal of the decay rate. In order to accurately capture
its solution features numerically, we design a family of exponential fitting Runge–Kutta
methods of collocation type to obtain the numerical approximation. The exponential fitting
approximations are proved to have higher order of uniform accuracy. We demonstrate
the efficiency of this family of exponential fitting Runge–Kutta methods for the delayed
recruitment/renewal equation via application to some important problems.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Delay differential equations (DDES) arise frequently in the mathematical modeling of a large variety of practical
phenomena in the dynamical diseases, population dynamics, physics, economics, biosciences, engineering and control
theory, in which the time evolution depends not only on present states but also on states at or near a given time in the
past (see, e.g. [1–8]).

Many of the above applications involve the so-called delayed recruitment/renewal equation [9]

dx(τ )

dτ
= −ax(τ ) + P(x(τ − τD)), (1)

where xmeasures the amount or concentration of some substance while a is its decay rate and P(·) describes its production.
Here P depends not on x at time τ but rather at a previous time τ − τD, and τD is regarded as the time-lag. Performing the
scaling t =

τ
τD

, u(t) = x(τDt) and introducing ε =
1

aτD
, f (·) :=

1
aP(·), we obtain the scaled delayed recruitment/renewal

equation

εu′(t) = −u(t) + f (u(t − 1)). (2)

We remark that the perturbation parameter ε ≪ 1 when τD ≫
1
a , which implies that delay differential equation (2) turns

out to be singularly perturbed. For a singularly perturbed DDE, the solution has initial layerswherein the solution exhibits an
exponential character and the potential for chaotic oscillations. We refer the reader to the papers [10,11] for the asymptotic
expansion of the solution and the uniform exponential stability of singularly perturbed DDEs.
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The computational challenge arises from the smallness of the parameter ε and the singular perturbation nature of the
problem. It is well known that standard discretization methods for solving singular perturbation problems are unstable
and fail to give accurate results when the perturbation parameter ε is small. Therefore, it is important to develop suitable
numerical methods to these problems, whose accuracy does not depend on the parameter value ε, that is, methods that are
uniformly convergent with respect to the perturbation parameter.

There are essentially two strategies to design schemes which have small truncation errors inside the layer region(s). The
first approach which forms the class of fitted-mesh methods consists in choosing a fine mesh in the layer regions (such as
Shishkin meshes [12,13]). Amiraliyev and Erdogan [14] have given almost a first order uniformly convergent scheme by
employing a backward difference operator on a non-uniformmesh which consists of the special piecewise uniformmeshes
on each time interval. Bawa, Lal and Kumar [15] proposed a first order uniformly convergent scheme which combines the
implicit Trapezoidal scheme in the inner region with the backward difference operator in the outer region on a Shishkin
mesh. The second approach is in the context of the exponential fitting methods in which the mesh remains uniform and
the difference schemes reflect the qualitative behavior of the solution(s) inside the layer regions. For example, McCartin
in [9] built second-order and fourth-order numerical schemes upon exponential fitting by replacing the function f in the
variation-of-constants formula with Hermite interpolation polynomials.

The main purpose of this paper is to construct an efficient numerical scheme of the initial value problem for the delayed
recruitment/renewal Eq. (2). In Section 2, we present the construction of a new family of exponential fitting Runge–Kutta
methods. The uniform convergence analysis is given in Section 3. In Section 4, some numerical examples are conducted to
illustrate the performance of our proposed methods. Finally, a conclusion is included in Section 5.

2. Exponential fitting Runge–Kutta methods of collocation type

We consider the discretization of the initial value problem for the delayed recruitment/renewal equation
εu′(t) = −u(t) + f (u(t − 1)), t ∈ (0, T ],
u(t) = ϕ(t), t ∈ [−1, 0], (3)

where the initial value function ϕ(t) is sufficiently differentiable for t ∈ [−1, 0], f is sufficiently differentiable and T ≥ 1 is
a positive integer. We assume that there is a constant L ≥ 0 such that |f (v) − f (ṽ)| ≤ L|v − ṽ| for all v, ṽ ∈ R.

In order to employ the exponential fitting technique, we first rewrite it as
du
dt

+
1
ε
u(t) =

1
ε
f (u(t − 1)),

and then apply an integrating factor e
t
ε to produce

d
dt


e

t
ε u(t)


=

1
ε
e

t
ε f (u(t − 1)).

Integrating the above equation from tn−1 to tn, we may obtain

e
tn
ε u(tn) − e

tn−1
ε u(tn−1) =

1
ε

 tn

tn−1

e
t
ε f (u(t − 1))dt,

which may be rearranged as

u(tn) = e−
h
ε u(tn−1) +

1
ε

 tn

tn−1

e−
tn−t

ε f (u(t − 1))dt. (4)

Let h be a given uniform step size such that Nh = 1 with some positive integer N ≥ 1. Denote mesh points ti = ih, i =

0, 1, . . . , un the approximation of u(tn) and u0 = ϕ(0).
The main idea behind exponential fitting integrators of collation type is to replace the function f in the variation-of-

constants formula with a suitable polynomial. For t = tn−1 + sh, we deduce from (4) the following relation

u(tn−1 + h) = e−
h
ε u(tn−1) +

h
ε

 1

0
e−

h(1−s)
ε f (u(tn−N−1 + sh))ds. (5)

For integer m ≥ 1, let ci ∈ [0, 1] (i = 1, 2, . . . ,m) and ci ≠ cj when i ≠ j be distinct collocation nodes, and U (n)
i is a

numerical approximation of u(tn−1 + cih). We denote U (n−N)
i = ϕ(tn−N−1 + cih) for n = 1, 2, . . . ,N , i = 1, 2, . . . ,m, and

U (n−N)
i is the numerical approximation of u(tn−N−1 + cih) when n > N .
To obtain the collocation solution,we replace the function f in the integral by a collocation polynomial pm−1(s) and obtain

the approximation

un = e−zun−1 + h
m
i=1

bi(z)f (U
(n−N)
i ), (6)



Download English Version:

https://daneshyari.com/en/article/4638049

Download Persian Version:

https://daneshyari.com/article/4638049

Daneshyari.com

https://daneshyari.com/en/article/4638049
https://daneshyari.com/article/4638049
https://daneshyari.com

