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a b s t r a c t

The paper analyses by Taylor series the several fifth-order of accuracy schemes for hyper-
bolic conservation laws: the classical WENOJS scheme Jiang and Shu (1996), the WENOM
scheme Henrick et al. (2005), the WENOZ scheme Borges et al. (2008) and the scheme,
called WENOε here, Aràndiga et al. (2011). The order of weights of these four schemes
agreed to the optimalweights is presented in detail. Then three prerequisites are developed
if one intends to improve theWENOJS scheme: the scheme arrives the 5th-order at critical
points; the weights of scheme approximate the optimal weights with high-order accuracy
when solution is smooth; the scheme should not introduce much oscillations intuitively in
the vicinity of discontinuities. According to the prerequisites above, a new WENO scheme
(MWENOZ) is devisedwhich is similar to theWENOZ scheme. Finally, themethod designed
here is demonstrated robustly by applying it to 1D and 2D numerical simulations and its
advantage compared with the WENOZ scheme seems more striking in 2D problems.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we are concerned with the improvement of 5th-order weighted essentially non-oscillatory schemes
(WENO) for hyperbolic conservation laws [1], which are based on the well-known essentially non-oscillatory schemes
(ENO) [2–5]. These high-order schemes were devised to capture the shocks (or contact discontinuities) without generating
spurious oscillations essentially. The considerable success ofWENO schemes owes to the adaptive combination of low-order
stencils, which can keep high order of accuracy around smooth regions and ENO property near shocks. This nonlinear
combination was firstly developed by Liu et al. in [6] for 3rd-order schemes, and then generalized by Jiang and Shu [1]
for higher-order schemes.

In [7], however, Henrick et al. found that the order of accuracy of WENOJS at critical points was concealed if ε = 10−6

occurring in the smoothness indicators of scheme. Actually, when the parameter ε was chosen to be much slighter,
e.g. ε = 10−40, WENOJS scheme only achieved the 3rd-order at critical points. They derived a very potent sufficient criteria
for the 5th-order convergence. And a mapped function applied to the weights of WENOJS scheme was devised to satisfy
this sufficient criteria and the optimal order was recovered at critical points. This scheme (WENOM) possesses significant
improvement comparedwithWENOJS scheme regardless of smooth or discontinuous regions. In [8,9] the authors found that
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the weights of discontinued stencils in WENOM scheme were amplified by the mapped function, which produced instable
solutions near large-gradient regions for long-time solutions, and a improved function was devised to overcome this defect.
Although the WENOM scheme improves the WENOJS scheme with global optimal accuracy, the cost of computation is also
increased accordingly. Another improved scheme (WENOZ) [10] modified the smoothness indicator in WENOJS scheme
unlike theWENOM scheme. The advantage ofWENOZ scheme is that it has almost same resolution (even higher) asWENOM
but with almost the same computational cost asWENOJS. In addition, theWENOZ scheme cannot achieve the optimal order
at critical points when p = 1 and recovers the optimal order when p = 2 but with slightly lower resolution (cf. [10]).
Recently, Aràndiga et al. [11] exploited the special structure ofWENOJS and gave compact formulae of smoothness indicators
and nonlinearweights. Moreover, to get the optimal order of accuracy at critical points, the authors suggested the parameter
ε should be chosen proportional to the square of mesh 1x2. Then [12] presented necessary and sufficient condition that ε
should satisfy when ε is regarded as a function of 1x.

By using the simple Taylor expansions, we analyse the smoothness indicators and nonlinear weights of the WENOJS,
WENOM, WENOZ and WENOε schemes. The WENOJS scheme only achieves the 3rd-order of accuracy at critical points,
and, more importantly, the nonlinear weights approximate the optimal weights with O(1x2). So, it is clear that, for
smooth solutions, the WENOJS scheme is worse than the central scheme. For the WENOM scheme, the nonlinear weights
approximate the optimal weights with O(1x6) and the order of accuracy at critical points is also recovered. Hence, the
WENOM scheme apparently possesses higher resolution than theWENOJS scheme, which is also demonstrated numerically
in [7]. Applying the sameprocedure to theWENOZ scheme, the approximated order ofweights to optimalweights isO(1x5).
So, the WENOZ and WENOM schemes should have similar behaviour. Finally, we also discuss the WENOε scheme which
approximates the optimal weights with the same order as WENOJS. So, numerically, the WENOε scheme cannot show too
much improvement in comparison with the WENOJS scheme despite of the recovery of order of accuracy at critical points.
Furthermore, to get the optimal accuracy, the parameter ε is taken as a function of 1x. In conclusion, we present three
prerequisites if one intends to improve theWENOJS scheme: the scheme arrives the 5th-order of accuracy at critical points;
the weights of scheme approximate the optimal weights with high-order accuracy when solution is smooth; the scheme
should not introduce much oscillations intuitively in the vicinity of discontinuities. According to the prerequisites above, a
newWENO scheme (MWENOZ) is devised which is similar to the WENOZ scheme, but the variable ζ , like τ5 in [10], is only
composed of the second derivatives of interpolation polynomials.

The rest of this paper is organized as follows. Section 2 gives a brief review over the procedure of WENOJS, WENOM,
WENOε schemes and analyses the order of accuracy of weights approximating the optimal weights. Section 3 reviews the
WENOZ scheme and introduces theMWENOZ scheme. Section 4 applies theMWENOZ scheme to the 1D and 2D conservation
laws and compares it with the WENOZ scheme.

2. The analysis of accuracy for WENOJS, WENOM andWENOε methods

In this section, we mainly review the several WENO methods [13,7,11] and analyse their order of accuracy with Taylor
expansion.

2.1. Review of the WENOJS method

The WENOJS method was initially devised to solve the hyperbolic conservation laws

ut + f (u)x = 0, a ≤ x ≤ b, t ≥ 0, (1)

on a uniform mesh

ℑ : a = x1/2 < x3/2 < · · · < xN−1/2 < xN+1/2 = b.

The cells Ii, cell centres xi and length of cells 1xi are respectively defined by

Ii = [xi−1/2, xi+1/2], xi = (xi−1/2 + xi+1/2)/2, 1xi = xi+1/2 − xi−1/2.

By using the technique of method of lines, a conservative semi-discretized form of (1) can be written

dui(t)
dt

= −
1

1xi


f̂ (xi+1/2) − f̂ (xi−1/2)


, (2)

if the function f̂ (x) satisfies

f (ui) =
1

1xi

 xi+1/2

xi−1/2

f̂ (x)dx. (3)

Then the numerical fluxes f̂ (xi±1/2) on the cell interfaces can be obtained by WENO reconstruction process.
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