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a b s t r a c t

Wepropose a new four-parameter family of distributions by compounding the generalized
gamma and power series distributions. The compounding procedure is based on the
work by Marshall and Olkin (1997) and defines 76 sub-models. Further, it includes as
special models theWeibull power series and exponential power series distributions. Some
mathematical properties of the new family are studied including moments and generating
function. Three special models are investigated in detail. Maximum likelihood estimation
of the unknown parameters for complete sample is discussed. Two applications of the new
models to real data are performed for illustrative purposes.
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1. Introduction

The generalized gamma (GG) distribution [1] is a well-known and established three-parameter distribution formodeling
lifetime data and phenomenonwithmonotone failure rates. It is specially useful to fit bathtub hazard rate data (in addition to
increasing, decreasing and unimodal shapes), thus overcoming the forms presented by the exponential, gamma andRayleigh
distributions for modeling this type of data. The GG distribution has been used in several research areas such as engineering,
hydrology and survival analysis. However, in order to fit still more complex situations, a number of extensions have been
proposed in recent years. For example, see the works by Cordeiro et al. [2], Ortega et al. [3], Cordeiro et al. [4] and the
references therein.

A random variable T following the GG distribution with shape parameters k > 0, α > 0 and scale parameter β > 0 has
cumulative distribution function (cdf) given by

FGG(t) = γ1
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t
β

α
, t > 0, (1)

where γ1(k, z) = γ (k, z)/0(k) is the incomplete gamma function ratio and γ (k, z) =
 z
0 ω

k−1e−ωdω is the incomplete
gamma function. The probability density function (pdf) corresponding to (1) is
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, t > 0. (2)
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Stacy and Mihram [5] encountered some difficulties in developing maximum likelihood procedures and large sample
inference for its parameters. On the other hand, Prentice [6] reparameterized it in such a way that the inference can be
fairly easily handled. Lawless [7] by using Prentice’s re-parametrization developed exact inference procedures concerning
the quantiles and scale parameters from uncensored samples and DiCiccio [8] proposed approximate conditional inference
methods for location and scale parameters. Recently, Huang and Hwang [9] presented a simple method for estimating the
model parameters, using its characterization andmoment estimation. An iterative estimationmethod for its parameterswas
implemented in S-PLUS by Gomes et al. [10]. Tadikamalla [11] proposed a simple rejection method for sampling directly
from the GG distribution without generating gamma variates, but valid only for β > 1.

Our chief goal is to propose a new extension of the GG distribution by compounding the GG and power series (PS)
distributions. The generated class is called the generalized gamma power series (GGPS) family. The compounding procedure
follows the pioneering work of Marshall and Olkin [12]. In the same way, several classes of distributions were proposed
by compounding some useful lifetime and PS distributions in the last few years. Chahkandi and Ganjali [13] defined
the exponential power series (EPS) class of distributions, which contains as special cases the exponential Poisson (EP ),
exponential geometric (EG) and exponential logarithmic (EL) distributions. Morais and Barreto-Souza [14] defined the
Weibull power series (WPS) class which includes as sub-models the EPS distributions. The WPS distributions can have
increasing, decreasing and upside down bathtub failure rate function. The generalized exponential power series (GEPS)
distributions were proposed by Mahmoudi and Jafari [15] following the same approach of Morais and Barreto-Souza [14].
Silva et al. [16] studied the extended Weibull power series (EWPS) family, which includes as special models the EPS
and WPS distributions. Bourguignon et al. [17] and Silva and Cordeiro [18] proposed the Birnbaum–Saunders power series
(BSPS) and Burr XII power series (BXIIPS) classes of distributions, respectively.

The rest of the paper is organized as follows. In Section 2, we introduce and motivate the new family and present a
useful representation for its density function. Section 3 gives an explicit expression for the GGPS moments. The moment
generating function (mgf) is also derived in this section.We discuss in Section 4 three special models of the proposed family.
Estimation of the parameters by maximum likelihood is addressed in Section 5. Section 6 gives two applications to real data
to prove that the new family can be used quite effectively in analyzing lifetime data. Section 7 provides some conclusions.

2. The GGPS family of distributions

The new family of distributions is rather simple to be constructed following the same set-up carried out by Marshall
and Olkin [12]. Given a discrete random variable N , let X1, . . . , XN be i.i.d. random variables having the GG distribution (1)
with shape parameters k, α > 0 and scale parameter β > 0, where N has a power series probability mass function (pmf)
(truncated at zero) given by

pn = P(N = n) =
an θn

C(θ)
, n = 1, 2, . . . . (3)

The coefficients an’s depend only on n and C(θ) =


∞

n=1 an θ
n (for θ > 0) is assumed finite. It is important to remark

that the probability class of distributions (3) has been considered in [19,20]. Table 1 lists some power series distributions
(truncated at zero) defined by (3) such as the Poisson, logarithmic, geometric and binomial distributions. LetX = min {Ti}Ni=1.
The conditional cumulative distribution of X |N = n is given by

FX |N=n(x) = 1 −


1 − γ1
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i.e., X |N = n has the exponentiated form of (1) with parameters n, k, α and β . So, we obtain
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, x > 0, n = 1, 2, . . . .

Then, the marginal cdf of X becomes

FGGPS(x; θ, k, α, β) = 1 − C(θ)−1C
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, x > 0. (4)

Eq. (4) is called the GGPS family of distributions.
Hereafter, a random variable X following (4) with parameters θ, k, α and β is denoted by X ∼ GGPS(θ, k, α, β). Eq. (4)

extends several other distributions which have been studied in the literature. The EG distribution [21] is obtained by taking
k = α = 1 and C(θ) = θ(1−θ)−1 with θ ∈ (0, 1). Further, for k = α = 1, we obtain the EP [22] and EL [23] distributions
by taking C(θ) = eθ − 1, θ > 0, and C(θ) = − log(1 − θ), θ ∈ (0, 1), respectively. In the same way, for k = 1, we obtain
the WG [24] and WP [25] distributions. The EPS distributions are obtained from (4) when k = α = 1 for any C(θ) listed
in Table 1 (see [13]). Finally, we obtain the WPS distributions from (4) by taking k = 1 for any C(θ) in Table 1 (see [14]).
Some important sub-models of the GG distribution are listed in Table 2. This composition leads to 76 special models.
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