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a b s t r a c t

The aim of this paper is to introduce an enhanced incremental procedure that can be
used for the numerical evaluation and reliable estimation of the limit load. A conventional
incremental method of limit analysis is based on parametrization of the respective
variational formulation by the loading parameter ζ ∈ (0, ζlim), where ζlim is generally
unknown. The enhanced incremental procedure is operated in terms of an inversemapping
ψ : α → ζ where the parameter α belongs to (0,+∞) and its physical meaning is work
of applied forces at the equilibrium state. The functionψ is continuous, nondecreasing and
its values tend to ζlim as α → +∞. Reduction of the problem to a finite element subspace
associated with a mesh Th generates the discrete limit parameter ζlim,h and the discrete
counterpart ψh to the function ψ . We prove pointwise convergence ψh → ψ and specify
a class of yield functions for which ζlim,h → ζlim. These convergence results enable to find
reliable lower and upper bounds of ζlim. Numerical tests confirm computational efficiency
of the suggested method.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Elastic-perfectly plastic models belong among fundamental nonlinear models which are useful for estimation of yield
strengths or failure zones in bodies caused by applied forces. Such models are mostly quasistatic (see, e.g., [1–3]) to catch
the unloading phenomenon. Sincewe are only interested inmonotone loading processes, this phenomenon can be neglected
and the class of models based on the deformation theory of plasticity is adequate (see, e.g., [4,5,3,6,7]). The Hencky model
associated with the von Mises yield criterion belongs to this class as well as other models with different yield conditions.
Each model from this class leads to a static problem for a given load functional L representing the work of surface or volume
forces. The problem can be formulated both in terms of stresses or displacements. These two approaches generate a couple
of mutually dual problems.

The variational problem formulated in terms of stresses leads to minimization of a strictly convex, quadratic functional
on the set of statically and plastically admissible stress fields. On the other hand, the stored energy functional appearing
in the variational problem for displacements has only a linear growth at infinity with respect to the strain tensor or some
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components of this tensor. Existence of a finite limit load reflects specifics of this class of problems. Unlike other problems in
continuummechanicswith superlinear growth of energy, exceeding of the limit load leads to absence of a solution satisfying
the equilibrium equations and constitutive relations. Physically this means that under this load the body cannot exist as a
consolidated object. Therefore, finding limit loads is an important problem in the theory of elasto-plasticmaterials and other
close problems.

To introduce the limit load for the functional L the problem is usually parametrized at first. Instead of the fixed load, the
set {ζ L | ζ ∈ R+} of loads is considered. The limit value ζlim of the parameter is defined as a supremum of all ζ ≥ 0 for
which the intersection of the sets of statically and plastically admissible stress fields is nonempty. In particular, no solution
exists for the load ζ Lwith ζ > ζlim.

There exist several approaches how to evaluate ζlim. The first type of methods is based on the use of a specific variational
problem which characterizes directly the limit state. It can be formulated either in terms of displacements (kinematical
approach) or in terms of stresses (static approach). Both are mutually dual [8,7]. As a computational method the static limit
analysis has been used in [9], while the kinematic one in [10]. For example, the respective problemof kinematic limit analysis
for the classical Hencky model with the von Mises condition reads as follows:

ζlim = inf
v∈V , L(v)=1

div=0


Ω

|ε(v)| dx,

where V is a subspace of H1(Ω; R3) of functions vanishing on the Dirichlet part of the boundary (see notation of Section 2).
However, this problem is not simple for numerical analysis because it is related to a nondifferentiable functional and contains
the divergence free constraint. The respective numerical approaches developed to overcome these difficulties often use
saddle point formulations with augmented Lagrangians (see, e.g., [10,8]). Other methods use techniques developed for
minimization of nondifferentiable functionals.

The classical approach uses incremental techniques to enlarge ζ up to its limit value [11,12]. The load increments have
to be chosen adaptively since the value of ζlim is not known. The incremental limit analysis is usually combined with the
standard finite elementmethod and the resulting parametrized problem (Ph)ζ is then solved in terms of displacements. The
main drawback of this approach is that the discrete limit value ζlim,h can overestimate ζlim and convergence of {ζlim,h}h to
ζlim is not guaranteed in general.

Besides ζlim, the incremental approach enables to detect other interesting thresholds on the loading path that represent
global material response, namely, ζe,h – the end of elasticity and ζprop,h – the limit of proportionality. For ζ ≤ ζe,h, the
response is purely elastic (linear) and for ζ ∈ [ζprop,h, ζlim,h], the response is strongly nonlinear. To investigate globalmaterial
response, it is necessary to introduce a quantity α depending on ζ < ζlim,h. For example, α can represent a computed
displacement at a point in which the body response is the most sensitive on the applied load. Examples of such α− ζ curves
are introduced, e.g., in [1, Section 7,8].

In [13], the response parameter α has been introduced for the Hencky problem and the linear simplicial (P1) elements
as follows: α = L(uh,ζ ) where uh,ζ denotes a solution of (Ph)ζ for ζ < ζlim,h. This parameter is universal for any load and
geometry. Moreover, there exists a function ψh : α → ζ that is continuous, nondecreasing and satisfying ψh(α) → ζlim,h
as α → +∞. Further, for a given value of α, a minimization problem (Ph)

α for the stored strain energy functional subject
to the constraint L(v) = α has been derived. Its solution coincides with a solution to problem (Ph)ζ for ζ = ψh(α) and
thus the loading process can be controlled indirectly through the parameter α. Consequently, in [14], suitable numerical
methods for both problems, (Ph)ζ and (Ph)

α , have been proposed and theoretically justified. Further, the load incremental
methods controlled through ζ and α have been compared there.

The aim of this paper is to get reliable estimates of ζlim using the incremental procedure. To this end, we introduce a
continuous, nondecreasing function ψ : R+ → (0, ζlim) satisfying ψ(α) → ζlim as α → +∞. In comparison to [14,13],
the function ψ is defined within a continuous setting of the problem and also for a general yield criterion. The derivation
of ψ however is not straightforward owing to the fact that the primal formulation is not well-posed on classical Sobolev
spaces. Therefore the dual formulation of the problem in terms of stresses will be used. Further, it is considered the discrete
counterpart ψh of ψ within the P1 elements. In case of the von Mises yield criterion, the definition of ψh coincides with
[14,13]. From the computational point of view, it is crucial to show that limh→0+

ψh(α) = ψ(α) for any α ≥ 0 and use the
estimate ψ(α) ≤ ζlim ≤ ζlim,h. We also specify a class of yield functions for which ζlim,h → ζlim holds.

The paper is organized as follows: In Section 2, we introduce basic notation, define elasto-plastic problems, and recall
some results concerning properties of solutions. In Section 3, the loading parameters ζ and α are introduced. Then the
function ψ : α → ζ is constructed and its properties are established. In Section 4, we formulate problems in terms of
stresses and displacements related to a prescribed value of α. Section 5 is devoted to standard finite element discretizations
of the problems and to convergence analysis. Finally, in Section 6, we present two examples with different yield functions
and compute lower and upper bounds of the limit load using the suggested incremental procedure.

2. Elastic-perfectly plastic problem based on the deformation theory of plasticity

We consider an elasto-plastic body occupying a bounded domain Ω ⊆ R3 with Lipschitz boundary ∂Ω . It is assumed
that ∂Ω = Γ D ∪ Γ N , where ΓD and ΓN are open and disjoint sets, ΓD has a positive surface measure. Surface tractions of
density f are applied on ΓN and the body is subject to a volume force F .
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