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a b s t r a c t

Integral equations of the first kind with a smooth kernel and perturbed right-hand side,
which represents available contaminated data, arise in many applications. Discretization
gives rise to linear systems of equations with a matrix whose singular values cluster at the
origin. The solution of these systems of equations requires regularization, which has the
effect that components in the computed solution connected to singular vectors associated
with small singular values are damped or ignored. In order to compute a useful approx-
imate solution typically approximations of only a fairly small number of the largest sin-
gular values and associated singular vectors of the matrix are required. The present paper
explores the possibility of determining these approximate singular values and vectors by
adaptive cross approximation. This approach is particularly useful when a fine discretiza-
tion of the integral equation is required and the resulting linear system of equations is of
large dimensions, because adaptive cross approximationmakes it possible to compute only
fairly few of the matrix entries.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

This paper considers the approximate solution of Fredholm integral equations of the first kind,
Ω1

κ(s, t)x(t)dt = g(s), s ∈ Ω2, (1.1)

with a smooth kernel κ . TheΩi are subsets of Rdi for some positive integers di, i = 1, 2. Integral equations of this form arise
in many applications, including remote sensing, computerized tomography, and image restoration. The solution of (1.1)
is a so-called ill-posed problem. A reason for this is that the singular values of the integral operator cluster at the origin;
see, e.g., [1,2].

Discretization of (1.1) by a Galerkin, Petrov–Galerkin, or Nyström method yields a linear system of equations

Ax = g, A ∈ Rn×n, g ∈ Rn, (1.2)

✩ The research was partially supported by the Research Council KU Leuven, project OT/10/038 (Multi-parameter model order reduction and its
applications), PF/10/002 Optimization in Engineering Centre (OPTEC), CREA-13-012 (Can Unconventional Eigenvalue Algorithms Supersede the State of
the Art), OT/11/055 (Spectral Properties of Perturbed Normal Matrices and their Applications), by the Fund for Scientific Research—Flanders (Belgium),
G.0828.14N (Multivariate polynomial and rational interpolation and approximation), G.0342.12N (Reestablishing Smoothness for Matrix Manifold
Optimization via Resolution of Singularities), and by the Interuniversity Attraction Poles Programme, initiated by the Belgian State, Science Policy Office,
Belgian Network DYSCO (Dynamical Systems, Control, and Optimization). This research also is supported in part by NSF grant DMS-1115385.
∗ Corresponding author.

E-mail addresses: thomas.mach@cs.kuleuven.be (T. Mach), reichel@math.kent.edu (L. Reichel), marc.vanbarel@cs.kuleuven.be (M. Van Barel),
raf.vandebril@cs.kuleuven.be (R. Vandebril).

http://dx.doi.org/10.1016/j.cam.2016.02.020
0377-0427/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.cam.2016.02.020
http://www.elsevier.com/locate/cam
http://www.elsevier.com/locate/cam
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cam.2016.02.020&domain=pdf
mailto:thomas.mach@cs.kuleuven.be
mailto:reichel@math.kent.edu
mailto:marc.vanbarel@cs.kuleuven.be
mailto:raf.vandebril@cs.kuleuven.be
http://dx.doi.org/10.1016/j.cam.2016.02.020


T. Mach et al. / Journal of Computational and Applied Mathematics 303 (2016) 206–217 207

with a matrix with many singular values close to the origin. The matrix may be very ill-conditioned already for small to
moderate values of n, where we measure the conditioning as the ratio between the largest and smallest singular values
of A. In fact, A may be singular. Linear systems of equations with a matrix of this kind are commonly referred to as
discrete ill-posed problems. We will for notational simplicity in this paper assume the matrix A to be square, however, the
methods described can also be applied after minor modifications when A is rectangular, in which case the linear system of
equations (1.2) may be replaced by a least-squares problem.

In many applications, the right-hand side vector g represents measured data and is contaminated by measurement
and discretization errors. Due to these errors and the ill-conditioning of A, straightforward solution of (1.2) typically
yields a computed solution that is severely contaminated by propagated error and is therefore not useful. To circumvent
this difficulty, the system (1.2) is commonly replaced by a nearby problem that is less sensitive to the error in g . This
replacement is referred to as regularization. The possibly most popular regularization methods include truncated singular
value decomposition (TSVD) and Tikhonov regularization.

Define the singular value decomposition (SVD)

A = UΣV T , (1.3)

where U = [u1, u2, . . . , un] ∈ Rn×n and V = [v1, v2, . . . , vn] ∈ Rn×n are orthogonal matrices and

Σ = diag[σ1, σ2, . . . , σn] ∈ Rn×n

is a diagonal matrix. Its nontrivial entries are the singular values of A; they are ordered according to σ1 ≥ σ2 ≥ · · · σn ≥ 0.
The columns of U and V are commonly referred to as the left and right singular vectors of A, respectively. The superscript T

denotes transposition. The matrix

Ak =

k
j=1

σjujvT
j (1.4)

is a closest matrix of rank at most k to A in the spectral norm; see, e.g., [3]. The TSVD method determines, for some suitable
k ≥ 0, the solution of minimal Euclidean norm, denoted by xk, of the least-squares problem

min
x∈Rn

∥Akx − g∥. (1.5)

Here and throughout this paper ∥ · ∥ stands for the Euclidean vector norm or the spectral matrix norm. The parameter k is a
regularization parameter that determines howmany singular values and vectors of A are used to compute the approximate
solution xk of (1.2).

Tikhonov regularization replaces the system (1.2) by the penalized least-squares problem

min
x∈Rn

{∥Ax − g∥
2
+ µ∥x∥2

}, (1.6)

which has a unique solution xµ for any positive value of the regularization parameterµ. Substituting the SVD (1.3) into (1.6)
shows that Tikhonov regularization dampens the contributions to xµ of singular values and vectors with large index k the
most; increasing µ > 0 results in more damping. We refer to [4,1,5,2,6–8] for details and computed examples with these
regularization methods.

The determination of suitable values of the regularization parameters, k in (1.5) andµ in (1.6), is important for the quality
of the computed approximate solution. Several methods have been described in the literature including the discrepancy
principle, the L-curve criterion, and generalized cross validation; see [9–11] for recent discussions of their properties and
illustrations of their performance. Regularizationmethods typically require that regularized solutions for several parameter
values be computed and compared in order to determine a suitable value.

The present paper is concerned with the situation when the data vector g in (1.2) is of high dimension. Then the matrix
A is large. The repeated solution of (1.6) can be carried out by iterative methods; see, e.g., [4,1,5–7]. These methods require
the evaluation of matrix–vector products with A, and possibly with AT as well, and this can be expensive when A is large.
Moreover, all entries of the matrix have to be computed. There are iterative methods for computing the first k singular
values and associated singular vectors of the matrix A; see, e.g., [12–14]. These methods also require matrix–vector product
evaluations with A and AT , as well as the evaluation of all matrix elements.

Cross approximation, sometimes also referred to as skeleton approximation, of matrices has been proposed as an
approach to approximate a large densematrix by amatrix of low rank; see, e.g., [15–19] and references therein. Thismethod
seeks to select a subset of k rows and columns of thematrix A to obtain amatrixMk ∈ Rn×n of rank atmost k so that ∥A−Mk∥

is small. Due to the optimality of the SVD of A, we have

∥A − Ak∥ ≤ ∥A − Mk∥.

However, Mk is much cheaper to compute than Ak. In particular, the determination of Mk does not require that all entries
of A be evaluated. The good performance of cross approximation for the approximation of a large matrix A by a matrix Mk
of low rank k is well documented in the literature; see, e.g., [15–19]. However, we are not aware of applications of cross
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