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a b s t r a c t

We consider the evaluation of the sensitivity or condition number of (generalized)
eigenvalue problems for a large and sparse real matrix (or matrix pair) in Rn×n, through
some (coupled) Sylvester equation using Newton’s method. The technique of the statistical
condition estimation has been adapted to the sensitivity of symmetric matrices as well
as general matrices with special structures under some assumptions on various types of
perturbations.
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1. Introduction

For A, B ∈ Rn×n, consider the generalized eigenvalue problem (GEP):

Ax = λBx, x ≠ 0,

with B = In for the standard eigenvalue problem (SEP). From [1], we can extend to large-scale SEP and compute the sensitiv-
ity of the SEP associatedwith a large and sparse real matrix A (to be specified). Consider the block-Schur decomposition on A

P⊤AP =


A11 A12
0 A22


, (1)

with Aij ≡ P⊤

i APj (i, j = 1, 2) and P ≡ [P1, P2] ∈ Rn×n being orthogonal (or P−1
= P⊤). We assume that P is in Householder

factors [2, p. 224], so that vectormultiplications by P can be computed inO(n) flops. Here, P1 ∈ Rn×m (m ≪ n) is an accurate
estimate to the basis of some invariant subspace associated with A11 (see [3]) and the subspectra of the submatrices A11 and
A22 are nonintersecting, giving

σ(A11) ∩ σ(A22) = φ, (2)
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thus the invariant subspace approximated by span(P1) is isolated and well-defined. From the definition of an invariant sub-
space of the matrix A, providing some correction R ∈ Rm×(n−m) and the fact that

P

Im R
0 In−m

−1

=


Im −R
0 In−m


P⊤,

we have

[Im, − R] P⊤AP

R⊤, In−m

⊤
= 0,

leading to the Sylvester equation

A12 = RA22 − A11R, (3)

giving

T−1P⊤APT =


A11 0
0 A22


, where T ≡


I R
0 I


. (4)

Then define

T−1P⊤EPT ≡


D11 D12
D21 D22


, (5)

assume that E is a perturbedmatrix such as Â = A+E, devised from a distribution E = {E : ∥E∥ ≤ ϵ∥A∥, for a scalar ϵ > 0}.
The perturbed matrix Â can also be devised on the block-Schur decomposition, combining with (1)

P⊤ÂP ≡


Â11 Â12

Â21 Â22


=


A11 + E11 A12 + E12

E21 A22 + E22


, (6)

where Eij ≡ P⊤

i EPj (i, j = 1, 2).
The Sylvester equation in (3) has appeared frequently in papers associated with SEPs and their perturbation or error

analysis and it plays vital roles in many applications such as matrix eigendecompositions [2], control theory [4], model
reduction [5], image processing [6], numerical solution ofmatrix differential Riccati equations [7] andmanymore. The large-
scale Sylvester equationhas been solved via theKrylov subspace based algorithms andAlternating-Directional-Implicit (ADI)
iterations. The related work can be found in [8–11] and its solution of (3) from refinement is to get the correction R, please
consult [12,13,3].

Theorem 1.1 will be modified from [3, Theorem 4.1], which is for the condition numbers of the average eigenvalue of
A11 and the invariant subspace spanned by the columns of P1 (the sensitivities of the GEP will be discussed in Theorem 3.1
later).

Theorem 1.1. Let A ∈ Rn×n and M = [M1 M2] be unitary such that

M⊤AM =


A11 A12
A21 A22


,

where the right-hand side is partitioned conformably with M. Define the operator TA by TA(Q ) = QA11 − A22Q . If the
nonsymmetric algebraic Riccati equation (NARE)

A21 + A22S − SA11 − SA12S = 0 (7)

has a solution S, then the columns of

M̂1 = (M1 + M2S)(I + S⊤S)−
1
2

are orthogonal and span an invariant subspace of A, and the matrix

Ã11 = M̂⊤

1 AM̂1

is similar to the matrix A11 + A12S.

The conditions for the solvability of (7) ((28) for GEP in Section 3) should be satisfied, see [12,14,13,15,1,3] and the
perturbation analysis of (7) was also presented in [3].

The condition number of a problem calculates the sensitivity of the solution to small perturbations in the input. We call
the problem ‘‘well conditioned’’ if its condition number is small; otherwise the problem is ‘‘ill conditioned’’. Some examples
of the famous condition number problems are referred to [16–19]. For the condition numbers of the average eigenvalue of
A11 and the invariant subspace, the technique we adapt is the statistical condition estimation (SCE). SCE has been usually
used in the framework of Monte Carlo trials [20,21] where the SEP has to be solved [22–26] and extended to applications
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