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a b s t r a c t

Descent gradient methods are the most frequently used algorithms for computing
regularizers of inverse problems. They are either directly applied to the discrepancy term,
which measures the difference between operator evaluation and data or to a regularized
version incorporating suitable penalty terms. In its basic form, gradient descent methods
converge slowly.

We aim at extending different optimization schemes, which have been recently
introduced for accelerating these approaches, by addressing more general penalty terms.
In particular we use a general setting in infinite Hilbert spaces and examine accelerated
algorithms for regularization methods using total variation or sparsity constraints.

To illustrate the efficiency of these algorithms, we apply them to a parameter
identification problem in an elliptic partial differential equation using total variation
regularization.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we investigate algorithms for the approximate solution of minimization problems of the form
min
u∈H

Θ(u) whereΘ(u) := F(u)+ Φ(u). (1)

Here H is a Hilbert space, F ,Φ : H → R, where F is smooth, but not necessarily convex, and Φ is convex
but nonsmooth. Such problems arise in many applications including regularization methods for inverse problems using
Tikhonov regularization [1], where e.g. F(u) := ∥K(u)−yδ∥p denotes a discrepancy termmeasuring the difference between
operator evaluation and data andΦ denotes a penalty term such as total variation [2] or a sparsity constraint [3–7]. Typical
applications include parameter identification for partial differential equations, see e.g. [8], or pose estimation problems in
computer vision as treated e.g. in the EU-SceneNet project.1

This is a well studied problem both in most general settings as well as in more detail for some special cases of H, F
and Φ . Many algorithms have been proposed for solving Problem (1), for an incomplete list concerning mostly quadratic
discrepancy terms see e.g. [3–5,9–11]. When F is not a quadratic functional and Φ is a sparsity functional, there are
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fewer algorithms available in practice e.g. [5,9,10,12–15]. Most of these methods are gradient-type algorithms and thus
they converge quite slowly. Consequently, accelerated algorithms of gradient-type methods [12,13,15] and of semismooth
Newton as well as quasi-Newton methods, see e.g. [9], have been studied intensively.

In order to clarify our contributions to this problem, we briefly describe some closely related work in [12,13,15], which
serves as themotivation for the present paper. In [12,13], the authors propose accelerated algorithms for solving Problem (1)
in finite dimensional spaces, H = RN . Both these papers address general functionals F and Φ , but then all algorithms are
applied only for the sparsity functionalΦ(u) =

N
i=1 |ui|.

Recently, the algorithms given in [12,13] have been extended to Problem (1) in an infinite Hilbert spaceH for nonconvex
F , but only for sparsity constraints i.e.Φ given by

Φp(u) =

i∈Λ

ωi|⟨u, ϕi⟩|
p, (2)

where ωi ≥ ω0 > 0 for all i and {ϕi}i∈Λ is an orthonormal basis (or frame) of H [15].
In summary, in [12,13,15], the authors have proposed a gradient-typemethod and two accelerated versions, they include

numerical examples for the case of a sparsity functionalΦ .When F is convex, the convergence of two accelerated algorithms
is proven there and the objective functional decreases with rate O( 1

n2
), where n is the iteration counter. This convergence

rate is known to be the best possible for algorithms that use only the values of the objective functional and its gradient.
Our contributions in this paper are as follows:

• We will extend the algorithms in [12,13,15] to Problem (1) considered in a more general setting, i.e. in a general Hilbert
space with general functionals F and Φ . We emphasize that the result on convergence of the gradient-type method
given in Theorem 2.1 is new, and cannot be deduced from previous ones in [12,13,15]. This is the main contribution of
the paper. Further contributions are an analysis of the effects of stepsize selection on the convergence rate and efficiency
of the descent gradient iteration. We implement two accelerated versions and present results with different numerical
examples.
• We will apply these algorithms to two popular regularization methods: sparsity regularization, nonnegative sparse

regularization and total variation regularization. We emphasize that our algorithms (convergence analysis, numerical
examples) applied to the total variation regularization has – to the best of our knowledge – not been addressed in the
literature before. The efficiency of this approachwill be illustrated in the section on numerical examples. For nonnegative
sparse regularization, a thorough investigation on well-posedness, convergence rates as well as numerical algorithms is
given in [16].

There are many existing nonsmooth optimization numerical methods in the literature. Such methods are divided into
three classes: (1) nonsmooth black-box algorithms; (2) proximal mapping algorithms; and (3) smoothing algorithms. For
the first class, the algorithms are developed based on the notion of the subgradient and its generalization. For more details
on such algorithms, we refer to the books and papers [17–19] and the references therein. The algorithms analyzed in this
paper falls into the second class and a good overview on algorithms and numerical comparisons are given in [9,15] for sparse
regularization. For algorithms in the final class, we refer to the literature, e.g., [20,21] and the references therein.

The paper is organized as follows: in Section 2, we describe the descent gradient method and prove its convergence as
well as discussing stepsize choices. In Section 3 we present two accelerated versions of the descent gradient method for
Problem (1) with convex F . Section 4 is devoted to applications of our algorithms to the minimization problem in sparse
regularization, nonnegative sparse regularization and total variation regularization. Finally, in Section 5 the algorithms are
implemented and analyzed for the identification of the diffusion coefficient problem in an elliptic equation.

2. A descent gradient method

2.1. Problem setting and descent gradient iteration

Throughout this paperwemake the following assumptions aboutΦ and F in order to be able to establish the convergence
properties of the algorithms.

Assumption 2.1. (1) Φ is a positive, proper, convex, weakly lower semicontinuous and weakly coercive functional with
Dom(Φ) ≠ ∅.

(2) F is bounded from below and weakly lower semicontinuous. Without loss of generality, we assume F(u) ≥ 0, ∀u ∈ H .
(3) F is Lipschitz continuously Fréchet differentiable, i.e. it is Fréchet differentiable and there exists a constant L such that

∥F ′(u)− F ′(u′)∥ 6 L∥u− u′∥, ∀u, u′ ∈ H .

(4) If {un
} converges weakly to u such that {Θ(un)} is monotonically decreasing, then there exists a subsequence {unj} such

that

{F ′(unj)} → F ′(u).
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