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a b s t r a c t

Based on the accelerated Hermitian and skew-Hermitian splitting iteration scheme (Bai
and Golub, 2007), we propose a new two-parameter matrix splitting preconditioner in this
paper. Spectral properties of the preconditionedmatrix are analyzed in detail. Furthermore,
based on this preconditioner, an improved version of matrix splitting preconditioner is
presented and analyzed. Finally, performance of the preconditioners is compared by using
GMRES(m) as an iterative solver on linear systems arising from the discretization of Stokes
and Navier–Stokes equations.
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1. Introduction

In this paper, we consider saddle point systems of linear equations in the form of
A BT
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−b


or Au = f , (1)

where A ∈ Rn×n, B ∈ Rm×n and m ≤ n. We assume that A is positive real, i.e., H =
1
2 (A + AT ), the symmetric part of A is

symmetric positive definite. We assume that the matrix B ∈ Rm×n has full row rank and N (H) ∩ N (B) = 0, where N (H)
represents the null space ofmatrixH , i.e.,N (H) = {x ∈ Rn

|Hx = 0}. These assumptions guarantee that the linear system (1)
has a unique solution [1]. Alternatively, the saddle point problem (1) can also be written in an equivalent form
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The system of linear equations (2) has the symmetric-like form, whereas it may be highly indefinite. As a comparison, the
eigenvalues of the coefficient matrix of problem (1) are distributed in the right half plane [1]. The property is favorable to
the convergence of iterative solvers [2]. Therefore, we focus on (1) in this paper.

The saddle point problems of form (1) frequently arise in many applications, such as constraint optimization,
computational fluid dynamics, electromagnetism and so on. A number of numericalmethods have been proposed for solving
saddle point problems, including the Schur complement reduction methods, the null space methods, Uzawa-type methods,
GSOR and PIU iterative methods [3], and the restrictively preconditioned conjugate gradient methods [4,3,5], see [1] and
references therein. The coefficient matrix A is usually large and ill-conditioned, which makes convergence extremely slow
when iterative methods are used to solve the problems. It is well recognized that preconditioning is crucial to make the
iterative methods having fast convergence rate [2]. In recent years, considerable efforts have been made in developing
efficient preconditioners, and several types of preconditioning techniques have been proposed, for example the block
diagonal (triangular) preconditioners, constraint preconditioners [6,3], and some matrix splitting preconditioners [7,8].
Particularly, based on the HSS iteration, Benzi and Golub proposed an HSS preconditioner for generalized saddle point
problems, see [3,9,10,7,11] for details. The eigenvalue bounds of the preconditioned matrix are provided in [12,3,1] for the
HSS preconditioner. In [13], Pan, Ng and Bai developed an efficientmatrix splitting preconditioner for solving (1), whichwas
based on the matrix splitting iteration proposed in [14]. In this paper, a relaxed matrix splitting preconditioner is proposed
based on the matrix splitting proposed in [14] and a two-parameter (α and β) splitting iteration newly proposed by Bai
and Golub [9]. The spectral properties of the preconditioned matrix are analyzed in detail. In particular, we show that when
β > 0, α → 0+, the eigenvalues of the preconditioned matrix will be clustered around two points, one point is (0, 0)
and another point is (2, 0). Based on the spectrum analysis and idea of optimized approximation scheme proposed in [7],
we construct an improved matrix splitting preconditioner. The spectrum properties of the preconditioned matrix by the
improved preconditioner are analyzed and compared with that of the two-parameter preconditioner. Both preconditioners
are tested on a variety of problems arising from the discretization of Stokes, Navier–Stokes equations and distributed control
problems. The numerical results indicate that the improved preconditioner is very efficient and robust with respect to
relaxation parameters.

The reminder of this paper is organized as follows. In Section 2, we propose a two-parameter preconditioner induced
from a matrix splitting. In Section 3, we analyze the spectral properties of the preconditioned matrix by the two-
parameter preconditioner. In Section 4, we propose an improved matrix splitting preconditioner, and analyze the spectrum
properties of the preconditioned matrix. Finally, numerical experiments are performed to illustrate the efficiency of both
preconditioners in Section 5.

Throughout the paper, we use superscript T to denote the conjugate transpose of a vector or matrix, and ∥ · ∥ to denote
both the Euclidean vector norm and the subordinate spectral matrix norm. We denote the identity matrix of order n by In.

2. Two-parameter matrix splitting preconditioner

Observe that the coefficient matrix A can be split into two parts as follows:

A = T + S,

where

T =


A 0
0 0


and S =


0 BT

−B 0


. (3)

LetΛ be a diagonal matrix

Λ =


αIn 0
0 βIm


where α, β are positive parameters. Based on the coefficient matrix A, we have the following matrix splitting,

A = (Λ+ T )− (Λ− S) = (Λ+ S)− (Λ− T ).

Similar to the two-parameter splitting iteration method introduced in [9], the following alternative iteration formula
follows,

(Λ+ T )uk+ 1
2 = (Λ− S)uk

+ f ,
(Λ+ S)uk+1

= (Λ− T )uk+ 1
2 + f ,

(4)

where u0 is an initial guess. The iteration scheme (4) can be regarded as a generalization of the BASI iteration method
proposed in [12].
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