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a b s t r a c t

We study the local convergence of Chebyshev–Halley methods with six and eight order
of convergence to approximate a locally unique solution of a nonlinear equation. In
Sharma (2015) (see Theorem 1, p. 121) the convergence of the method was shown
under hypotheses reaching up to the third derivative. The convergence in this study is
shown under hypotheses on the first derivative. Hence, the applicability of the method
is expanded. The dynamics of these methods are also studied. Finally, numerical examples
examining dynamical planes are also provided in this study to solve equations in cases
where earlier studies cannot apply.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In this study we are concerned with the problem of approximating a locally unique solution x∗ of the equation

F(x) = 0, (1.1)

where F is a differentiable function defined on a convex subset D of S with values in S, where S is R or C.
Numerous problems from Applied Sciences including engineering can be solved by means of finding the solutions of

equations in a form like (1.1) using Mathematical Modeling [1–4]. Except in special cases, the solutions of these equations
can be found in closed form. This is the main reason why the most commonly used solution methods are usually iterative.
The convergence analysis of iterative methods is usually divided into two categories: semilocal and local convergence
analysis. The semilocal convergence matter is, based on the information around an initial point, to give criteria ensuring
the convergence of iteration procedures. A very important problem in the study of iterative procedures is the convergence
domain. In general the radius of convergence is small. Therefore, it is important to enlarge the radius.

The dynamical properties related to an iterative method applied to polynomials give important information about its
stability and reliability. In recent studies, authors such as Cordero et al. [5–9], Amat et al. [10,11,2], Gutiérrez et al. [12],
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Chun et al. [6], Magreñán [13,14], and many others [15–21,12,22–29,4,30,31] have found interesting dynamical planes,
including periodical behavior and others anomalies. One of our main interests in this paper is the study of the parameter
spaces associated to a family of iterative methods, which allow us to distinguish between the good and bad methods in
terms of its numerical properties. These are with the study of the dynamical behavior our objectives in this paper.

Recently, J. Sharma in [4] studied the local convergence of the method defined for each n = 0, 1, 2, . . . by

yn = xn − F ′(xn)−1F(xn)

zn = xn − (1 + (F(xn) − 2αF(yn))−1F(yn))F ′(xn)−1F(xn)

xn+1 = xn − A−1
n F(zn),

(1.2)

where x0 is an initial point, α ∈ S a given parameter and

An = [xn, yn; F ] + [zn, yn, xn; F ](zn − yn) + [zn, yn, xn, xn; F ](zn − yn)(zn − xn)

and [xn, yn; F ], [zn, yn, xn; F ], [zn, yn, xn, xn; F ] are divided differences of order one, two, three [1–3,30] respectively defined
by

[z, y; F ] =
F(z) − F(y)

z − y
,

[z, y, x; F ] =
[z, x; F ] − [y, x; F ]

z − y
,

[z, y, x, x; F ] =
[z, x, x; F ] − [y, x, x; F ]

z − y
where

[z, x, x; F ] =
[z, x; F ] − F ′(x)

z − x
.

The order of convergence was shown to be at least six and if α = 1, then the order of convergence is eight.
This method includes the modifications of Chebyshev’s method (α = 0), Halley’s method (α = 1/2) and super-Halley

method (α = 1). Method (1.2) is a useful alternative to the third order Chebyshev–Halley-methods [19–21,12,22–24]
defined for each n = 0, 1, 2, . . . by

xn+1 = xn −


1 +

1
2
(1 − αKF (xn))−1KF (xn)


F ′(xn)−1F(xn), (1.3)

where

KF (xn) = F ′(xn)−1F ′′(xn)F ′(xn)−1F(xn),

since the computation of F ′′(xn) is being avoided.
Method (1.2) can also be used instead of a method by D. Li, P. Liu and J. Kou [27] defined for each n = 0, 1, 2, . . . by

yn = xn − F ′(xn)−1F(xn)

zn = xn − (1 + (F(xn) − 2αF(yn))−1F(yn))F ′(xn)−1F(xn)

xn+1 = zn − B−1
n F(zn),

(1.4)

where

Bn = F ′(xn) + F̄ ′′(xn)(zn − xn)

and

F̄ ′′(xn) = 2F(yn)F ′(xn)2F(xn)−2.

However, the convergence of the preceding methods has been shown using Taylor expansions under hypotheses on
at least the third derivative (see Theorem 1 in [4]) which limits the applicability of these methods, although only the
first derivative appears in method (1.2). Notice, that for the convergence order of method (1.2) the existence of the ninth
derivative is required. As a motivational example, define function F on X = Y = R, D = Ū(0, 1) by

F(x) =


c1x3 ln x2 + c2x5 + c3x4, x ≠ 0
0, x = 0

where c1 ≠ 0, c2 and c3 are real parameters. Then, we have that

F ′(x) = 3c1x2 ln x2 + 5c2x4 + 4c3x3 + 2c1x2,
F ′′(x) = 6c1x ln x2 + 20c2x3 + 12c3x2 + 10c1x
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