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a b s t r a c t

Diffusion of molecules is simulated stochastically by letting them jump between voxels
in a Cartesian mesh. The jump coefficients are first derived using finite difference, finite
element, and finite volume approximations of the Laplacian on the mesh. An alternative
is to let the first exit time for a molecule in random walk in a voxel define the jump
coefficient. Such coefficients have the advantage of always being non-negative. These four
different ways of obtaining the diffusion propensities are compared theoretically and in
numerical experiments. A finite difference and a finite volume approximation generate the
most accurate coefficients.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Small copy numbers of many molecular species in biological cells require stochastic models of the chemical reactions
between themolecules and their diffusivemotion. One example is gene expressionwhere the number ofmolecules involved
is small and only stochasticmodels can explain observations in experiments [1,2]. Continuummodels for the concentrations
of the chemical species based on partial differential equations (PDEs) capture neither the randomness in the chemical
reactions nor the fact that the number of molecules is integer.

In awell stirred system, there is no space dependence of the distribution of the species. Gillespie [3] invented an algorithm
to simulate such chemical systems, the Stochastic Simulation Algorithm (SSA). The efficiency of the algorithm is improved
in [4]. It is extended in [5,6] to space-dependent systems where the diffusion of the molecules cannot be neglected.

The domain of interest is Ω with boundary ∂Ω . It is partitioned by a Cartesian mesh into compartments or voxels Vi
with volume |Vi| and a node xi in the center in [5]. The molecules jump between the voxels (or between the nodes in the
lattice) with a certain probability. The time until a molecule jumps fromVi to the adjacentVj is assumed to be exponentially
distributed with parameter λij. With ni neighbors, the total jump propensity out of Vi is

λi =

ni
j=1

λij. (1)

The diffusion propensity is λimi withmi molecules in Vi. Then the SSA for the diffusion in the molecular system is:

1. Initialize the number of moleculesmk, k = 1, . . . , K , in the K voxels at t = 0.
2. Sample the exponentially distributed time 1tk with rate λkmk to the first diffusion event in all K voxels and let tk = 1tk.
3. Determine the smallest tk. Let ti be the minimum of all tk in voxel Vi.
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4. For the jump from Vi, sample a jump to Vj with probability θij = λij/λi.
5. Update t := ti and molecule numbersmi := mi − 1 andmj := mj + 1.
6. Sample 1ti and 1tj with rates λimi and λjmj and let ti = t + 1ti and tj = t + 1tj and go to 3.

In the algorithm, the number of molecules mi in each voxel is updated if it has changed after an event and a new time ti
is determined for the next event in the same voxel. The SSA generates one realization of a continuous time, discrete space
Markov process. We will compare different ways of determining non-negative jump coefficients λij for a Cartesian mesh
where all voxels have equal size assuming that the rates to jump from Vi to Vj and back again are equal, λij = λji.

Let ui(t) be the numerical approximation at xi on the Cartesian mesh of the concentration u(x, t) satisfying the diffusion
equation in the domain Ω

∂u(x, t)
∂t

= 1u(x, t), x ∈ Ω, t ≥ 0, (2)

with Neumann boundary condition n · ∇u = 0 at the boundary ∂Ω with the outward normal n. Choose the λij coefficients
such that they approximate the Laplacian in node i at xi

1u(xi, t) ≈

ni
j=1

λjiuj(t) −

ni
j=1

λijuj(t) =

ni
j=1

λij(uj(t) − ui(t))

=

ni
j=1

λjiuj(t) − λiui(t). (3)

The node at xi has ni adjacent nodes at xj used in the approximation. In the limit of a large total number of molecules
M =

K
k=1 mk, the time dependent expected values of the concentrations ũi = mi/(M|Vi|) in the voxels in SSA with the

jump coefficients in (3) converge to the deterministic concentrations ui solving the discretized diffusion equation (2) using
(3), see [7]. The distribution for the difference between ũi and ui is given in [8].

In an equidistant Cartesian mesh, the Laplacian is discretized with a finite difference method (FDM) in [5,6,9].
Unstructured triangular meshes in 2D and tetrahedral meshes in 3D are better suited to represent complicated geometries
inside the cell effectively. The coefficients for these unstructured meshes are derived from a finite element method (FEM)
for the Laplacian in [10,11] and with a finite volume method (FVM) in [12].

The jump propensities λij have to be non-negative to be meaningful in the SSA. The standard 5-point (2D) and 7-point
(3D) approximations of the Laplace operator in (2)with FDMon a Cartesianmesh yield positiveλij for the neighboring voxels
but the FEM coefficients for an unstructuredmeshmay be negative for a poor mesh [11]. The numerical discretization of the
diffusion equation (2) by a common FVMmethod may be inconsistent [13] and not converge to the analytical solution on a
general unstructured mesh but the coefficients are non-negative.

If the jump coefficients are negative, the numerical solution of (2) will in general not be monotone and not satisfy
the discrete maximum principle. For the discrete maximum principle to hold the coefficients must satisfy the following
conditions, see [14]: (1) is valid for interior nodes; λij ≥ 0; and λi is greater than the sum of the off-diagonal elements for
at least one boundary node. Thus, the two first conditions apply for both the diffusion coefficients in the SSA and the spatial
discretization of the diffusion equation.

Many papers are devoted to the derivation of consistent FEM and FVM approximations fulfilling the discrete maximum
principle for triangular and quadrilateral meshes in 2D and tetrahedral meshes in 3D, e.g. [15–19]. They are nonlinear and
the coefficients in (3) depend on the solution ui making them less suitable as jump propensities in the SSA or rely onmeshes
with geometrical properties that may be difficult to achieve with a mesh generator. In [20,21] it has been shown that it
is impossible to construct a linear method, i.e. λij is constant in (3), satisfying the discrete maximum principle for a linear
elliptic equation on general quadrilateral meshes in 2D.

As an alternative, we solve the diffusion equation on a local domain and use the solution to calculate the mean first exit
time (FET) from that domain for a molecule in Brownian motion. The molecule is released at xi at t = 0 and after a random
walk it leaves a subdomain defined by the convex hull of the adjacent nodes xj, j = 1, . . . , ni, for the first time at t = τ .
The expected value of τ from this subdomain is the inverse of the rate λi. The mesh is Cartesian in 2D with different mesh
sizes hx and hy in the x and y directions, respectively. Jumps are allowed in the coordinate directions and along the diagonals,
see Fig. 1. The probability to exit from Vi to Vj depends on the distance between the nodes xi and xj, i.e. hx and hy. The FET
coefficients are always non-negative. They are compared with the methods above for approximations of the Laplacian. The
coefficients derived with FDM, FEM, and FVM also depend only on hx and hy in the mesh. The jump coefficients obtained by
the FET and the systematic comparison with the coefficients from numerical discretizations are the main contributions of
this paper. The analysis is extended to the fully unstructured case in [22].

The expected FET can be utilized in a differentway to solve (2), see [23] and the references therein. Stochastic simulations
determine the FET in polygonal domains with general boundary and initial conditions in a Monte Carlo method suitable for
high dimensions. Herewe are interested in using FET to find the probabilities of themotion ofmolecules on a discrete lattice.

In Section 2, we present the FDM, FEM, and FVM discretizations of the Laplacian and how to derive the jump coefficients
from them. We compute expressions for the FET in Section 3 to derive new jump coefficients from the exit behavior of
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