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a b s t r a c t

We provide an algorithm for detecting the involutions leaving a surface defined by a
polynomial parametrization invariant. As a consequence, the symmetry axes, symmetry
planes and symmetry center of the surface, if any, can be determined directly from the
parametrization, without computing or making use of the implicit representation. The
algorithm is based on the fact, proven in the paper, that any involution of the surface comes
from an involution of the parameter space R2; therefore, by determining the latter, the
former can be found. The algorithm has been implemented in the computer algebra system
Maple 18. Evidence of its efficiency for moderate degrees, examples and a complexity
analysis are also given.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Symmetry detection in 3D objects is an important matter in fields like Computer Graphics or Computer Vision. In
Computer Graphics, it is useful in order to gain understanding when analyzing pictures, and also to perform tasks like
compression, shape editing or shape completion. In Computer Vision, symmetry is important for object detection and
recognition. Many techniques have been tried so far to solve the problem. Some of them involve statistical methods and,
in particular, clustering; see for example the papers [1–4], where the technique of transformation voting is used, or [5],
based on the ExtendedGauss Image. Other techniques are robust auto-alignment [6], spherical harmonic analysis [7], feature
points [8], primitive fitting [9], and spectral analysis [10], to quote just a few. In addition, there are algorithms for computing
the symmetries of 2D and 3D discrete objects [11–14] and for boundary-representationmodels [14–16]. The list of all papers
addressing the subject is really very long, and the interested reader is referred to the bibliographies in these papers to get a
more complete list.

In the references on the topic, the object to be analyzed is quite commonly a point cloud or a mesh, sometimes with
missing parts, so that little structure is assumed on it. One exception here is the case of tensor product surfaces [11]. In
this case the geometry of the object, and in particular its symmetry, follows from that of an underlying discrete object, the
control polyhedron. Hence, the symmetries of the object can be found by applying methods to detect symmetries of discrete
objects [11–14].

In this paper we consider the problem of computing involutions, i.e. symmetries with respect to a point, line or plane, of
objects with a stronger structure, namely the set S of points defined by a polynomial parametrization

x(t, s) = (x(t, s), y(t, s), z(t, s)),
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with (t, s) ∈ R2. Such objects, well-known in Constructive Algebraic Geometry and Computer Aided Geometric Design,
are called polynomially parametrized algebraic surfaces. Certainly a tensor product surface corresponds to this description
whenever (t, s) is restricted to a compact rectangle [a, b] × [c, d] ⊂ R2. However, in our case (t, s) takes values over the
whole plane R2. Therefore we deal with the global surface S, not just with a piece of it, and an approach like [11–14] is not
applicable here.

In order to solve the problem we assume good properties on the parametrization x(t, s). More precisely, we assume
that the parametrization is injective except perhaps for a closed subset of (possibly singular) points of S, and that it is also
surjective as a mapping from the plane to S. Under these conditions, we prove that any involution of the surface is the result
of lifting an involution of the plane to S via the parametrization of the surface. This way, the problem is translated to the
parameter space, and in turn reduces to solving bivariate real polynomial systems.

The method can be seen as the generalization to surfaces of some ideas recently applied to compute symmetries of
planar and space rational curves [17–20]. Furthermore, the problem treated here is related to the more general question of
extracting geometric invariants from a surface parametrization. This question appears as one of the eight open problems on
the interplay between Algebraic Geometry and Geometric Modeling posed by Prof. Ron Goldman in [21].

This paper has the following structure. In Section 2 we introduce some generalities on surface parametrizations and
isometries, and we prove several results on symmetries of surfaces; although rotational symmetry is not addressed in this
paper, some properties of this type of symmetry are considered here, and then used to prove certain facts on involutions.
The method itself is presented in Section 3. Section 4 briefly addresses the special case of cylindrical surfaces. Finally, in
Section 5 we provide two detailed examples, we address complexity issues, and we report on the practical implementation
of the algorithm carried out in the computer algebra systemMaple 18. Our conclusions, and some observations about future
work, are provided in Section 6.

2. Generalities

2.1. Properness and normality

Throughout this paper we consider an algebraic surface S ⊂ R3 different from a plane, polynomially parametrized by
x : R2

→ R3, where

x(t, s) = (x(t, s), y(t, s), z(t, s))

and x(t, s), y(t, s), z(t, s) are polynomials in the variables t, s with coefficients in Q. Nevertheless, at certain points of this
paperwewill implicitly assume that the parametrization x can also be considered as x : C2

→ C3, so that both the parameter
space and the surface can be embedded into the complex plane and the complex space. We will also assume the same thing
for other real mappings in the paper. Since S admits a rational, and in fact a polynomial, parametrization then in particular
S is irreducible. The functions x(t, s), y(t, s), z(t, s) are the components of x, while t, s are the parameters of x. We define the
total degree, n, of the parametrization x as the maximum of the total degrees of the components of x. Furthermore, we will
assume that x is proper, i.e. birational or equivalently injective for almost all points of S except for at most a closed subset
of S. In particular, this implies that x−1 is a rational map. One can check properness by using the algorithms in [22,23]; for
reparametrization questions one can see [24–27].

We say that the parametrization x(t, s) is normal if it is surjective, i.e. if every point of S is reached via x by some pair of
parameters (t, s) ∈ C2. This problem has been well studied for the case of rational curves [28]. However, the same problem
for surfaces is not yet completely well understood. The question has been addressed in [29,30] for special kinds of surfaces,
and also in [31], where partial results on the problem are presented. In particular, in [31] a sufficient condition for a poly-
nomial parametrization to be normal (see Corollary 3.15 and Corollary 4.4 therein) is given. Throughout this paper, we will
also assume that the parametrization xwe work with is normal.

Additionally, for technical reasonswewill require x(0) to be a regular point of S; this requirement can always be satisfied
by applying, if necessary, a random linear change of parameters.

2.2. Isometries of algebraic surfaces

2.2.1. Basic definitions
Let us recall some facts from Euclidean geometry [32]. An isometry of Rn is a map f : Rn

−→ Rn preserving Euclidean
distances. Any isometry f of Rn is linear affine, taking the form

f (x) = Qx + b, x ∈ Rn, (1)

with b ∈ Rn and Q ∈ Rn×n an orthogonal matrix. In particular det(Q ) = ±1. For n = 3, the isometries of the space
form a group under composition that is generated by reflections, i.e., symmetries with respect to a plane, also calledmirror
symmetries. An isometry is called direct when it preserves the orientation, and oppositewhen it does not. In the former case
det(Q ) = 1, while in the latter case det(Q ) = −1. The identity map idRn of Rn is called the trivial symmetry. An isometry
f (x) = Qx + b of Rn is called an involution if f ◦ f = idRn , in which case Q 2

= I is the identity matrix and b ∈ ker(Q + I).
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