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a b s t r a c t

This paper provides the error estimates for generalized moving least squares (GMLS)
derivatives approximations of a Sobolev function in Lp norms and extends them for local
weak forms of DMLPGmethods. Sometimes they are called diffuse or uncertain derivatives,
but precisely they are direct approximants of exact derivatives which possess the opti-
mal rates of convergence. GMLS derivatives approximations are different from the standard
derivatives of MLS approximation. While they are much easier to evaluate at considerably
lower cost, in this paper the same orders of convergence with comparison to the standard
derivatives are obtained for them.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The moving least squares approximation (MLS) in the current form was introduced by Lancaster and Salkauskas [1] in
1981. There are many researches concerning the error analysis of this approximation. For example see [2–12]. In recent
years many authors have tried to improve and develop the MLS approximation in different aspects. As such improvements
and developments we can mention the complex variable MLS approximation [13] and the interpolating MLS [14,15].

A presentation of generalizedmoving least squares (GMLS) approximation and a connection to Backus–Gilbert optimality
were done in [4] and then an application to numerical integration was performed in [16]. In [17], the concept of GMLS was
linked to the so-called diffuse derivatives [18,19] and an error bound in L∞ norm was derived. The authors of [17] suggested
to ignore the phrase ‘‘diffuse derivatives’’ in favor of ‘‘GMLS derivatives approximations’’ because there is nothing diffuse or
uncertain about them. Afterward, in [20,21] the concept of GMLS approximation was employed to accelerate the meshless
local Petrov–Galerkin (MLPG) methods of Atluri and his collaborators [22,23]. The new methods were called direct MLPG
(DMLPG) because GMLS directly approximates the local weak forms and boundary operatorswithout any detour via classical
MLS shape functions.

The optimal rate of convergence for GMLS derivatives approximations toward the exact derivatives has been proved
in [17] in L∞(Ω) for sufficiently smooth functions over Ω∗, where Ω∗ can be larger than the consideration domain Ω . In
this paper we estimate the errors in Lp(Ω), p ∈ [1, ∞], relax the bounds for Sobolev functions overΩ and then extend them
for local weak forms of DMLPG. The results of this paper can be used for analyzing DMLPG and all methods based on diffuse
derivatives.

When GMLS is applied to recover the value of a functional, it suffices to evaluate the functional on a space of polynomials,
not on a certain trial space spanned by MLS shape functions. This significantly speeds up numerical calculations, if the
functional is complicated, e.g. a high order derivative or a numerical integration against a test function. This is the main
advantage of GMLS approximation compared with the MLS approximation. For more details see [17,20,24].
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The rest of this paper is organized as follows. In Section 2 the concept of GMLS approximation is reviewed and in Section 3
error bounds in Lp are proved. In Section 4 the error estimations and convergence rates are justified by some numerical
experiments.

2. GMLS derivative approximation

Let Ω ⊂ Rd, for positive integer d, be a nonempty and bounded set. In next section, more conditions on Ω will be
considered. Assume,

X = {x1, x2, . . . , xN} ⊂ Ω,

is a set containing N scattered points, called centers or data site. Distribution of points should be well enough to pave the
way for analysis.

Henceforth, we usePd
m, form ∈ N0 = {n ∈ Z, n > 0}, as space of d-variable polynomials of degree atmostm of dimension

Q =


m+d
d


. A basis for this space is denoted by {p1, . . . , pQ }.

TheMLS, as ameshless approximationmethod, provides an approximationu(x) of u(x) in terms of values u(xj) at centers
xj by

u(x) ≈u(x) =

N
j=1

aj(x)u(xj), x ∈ Ω,

where aj areMLS shape functions. MLS finds the best approximation to u out of Pd
m with respect to a discrete ℓ2 norm induced

by amoving inner product, where the corresponding weight function w depends not only on points xj but also on point x to
be approximated. Indeed, the influence of the centers is governed by w(x, xj), which vanishes for arguments x, xj ∈ Ω with
∥x − xj∥2 greater than a certain threshold, say δ. Thus we can define w(x, xj) = ϕ(∥x − xj∥2/δ) where ϕ : R>0 → R is a
compactly supported function on [0, 1].

Derivatives of u are usually approximated by derivatives of u,
Dαu ≈ Dαu(x) =

N
j=1

Dαaj(x)u(xj), x ∈ Ω,

and they are called standard derivatives. Since derivatives of complicated and non-closed from shape functions aj should be
taken, the standard derivatives are known to be time-consuming. This is the reason why some people avoid using them and
take a bypass via diffuse derivatives [18,19].

Another approach is a direct approximation of Dαu from the data without detour via derivatives ofu. In this case we have

Dαu ≈ Dαu(x) =

N
j=1

aj,α(x)u(xj), x ∈ Ω. (2.1)

This is a GMLS approximation where Dαu is recovered directly from u(xj) as a linear functional. It should be noted that
Dαaj(x) ≠ aj,α(x) in general, and in fact in vector form

aα(x) = WPT (PWPT )−1Dαp,

where W is the diagonal matrix carrying the weights wj = w(x, xj) on its diagonal, P is N × Q matrix of values pk(xj),
1 6 j 6 N , 1 6 k 6 Q and p = (p1, . . . , pQ )T . It is clear that the operator Dα acts only on the basis polynomials p, and this
significantly reduces the cost of computations. Details are provided in [17]. This approach provides the GMLS derivatives
approximations and [17] shows the coincidence with diffuse derivatives and gives an error bound in L∞ for them.

Eq. (2.1) can even be extended to more general recovery problem: under some conditions on linear functional λ, we can
write

(λu)(x) ≈ λu(x) =

N
j=1

aj,λ(x)u(xj), (2.2)

where the functional can be for instance point evaluations, derivative or integral operators, etc. Here aj,λ are functions
associated with λ and in vector form they can be obtained by

aλ = WPT (PWPT )−1λ(p).

Thus it suffices to evaluateλon the spacePd
m, not on a certain trial space spannedby certain shape functions. This significantly

speeds up numerical calculations, if the functional λ is complicated, e.g. a numerical integration against a test function. This
generalized approximation is the building block of different variations of DMLPG method [20,21,24].
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