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a b s t r a c t

We are interested in occupation times of jump diffusion processes with hyper-
exponentially distributed jump sizes. We develop a new approach to derive analytical
formulas for the Laplace transform of the joint distribution of a hyper-exponential jump
diffusion process and its occupation times. These formulas are then used to price step op-
tions.
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1. Introduction

It has a long history to investigate occupation times of stochastic processes. For a standard Brownianmotion {Wt; t ≥ 0},
Lévy [1] derived the following well-known result:
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where 1A is the indicator function of a set A. Then, the corresponding results for a Brownianmotion with drift were obtained
in [2,3]. After that, for a spectrally negative Lévy process X = {Xt; t ≥ 0}, i.e., a Lévy process without positive jumps,
Landriault et al. [4] has derived the Laplace transform of
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has also been obtained under the assumption that X is a spectrally negative Lévy process (see [5]), where τ−

0 and τ+
c are the

first passage times of X . Recently, Guèrin and Renaud [6] studied the following expectation:
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where X is a spectrally negative Lévy process. They derived formulas for the Laplace transform of (1.3) with respect to t and
applied their results to price step options. However, most papers of such research assume that the process X is a diffusion
process or a Lévy process without positive jumps.
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In this paper, for a hyper-exponential jump diffusion X , we explore the computation of the following distribution:
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and we succeed in deriving formulas for the Laplace transform of (1.4) with respect to t when a = −∞. Although our
approach can also be applied to derive the Laplace transform of (1.4) for a ∈ R, we do not consider this case in this article
because it needs many additional calculations.

We should mention that, under the double exponential jump diffusion process, Cai et al. [7] derived formulas for
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with a proper γ . Here, we extend their model to the hyper-exponential jump diffusion process, and more importantly, we
emphasize that our approach is completely different from theirs. In [7], they first showed that (1.5), as a function of x, satisfies
an integro-differential equation (IDE), then reduced the IDE to an ordinary differential equation (ODE), and finally solved
the ODE. However, in this article, our method depends on the strong Markov property of X and the solutions of one-sided
and two-sided exit problems of X . Therefore, we do not need to take toomuch effort as in [7] to establish an IDE. In addition,
the assumption of exponential jumps is important in [7] while it is not used in our approach.

For the application of our results, we consider the pricing of occupation time derivatives, specifically, the pricing of step
options. Occupation time derivatives are introduced to resolve some questions involved in the standard barrier options. For
example, for a knock-out barrier option, its value becomes 0 as soon as the underlying asset price crosses the barrier. This
property leads to an obstacle for option trader to manage the risk. For more details about the disadvantages of standard
barrier options, see [8]. Unlike the standard barrier option, the payoff of an occupation time derivative often depends on the
occupation times of the underlying asset, which helps to alleviate the above problem effectively. There are many types of
such derivatives such as step options and corridor options, see for example [7], and many papers study the pricing of them,
see among others, [2,8–12].

The rest of the paper is organized as follows. In Section 2, the details of ourmodel and some important preliminary results
are given. Our main results are derived in Section 3, and then in Section 4, the application to price step options and some
numerical results are presented. Finally, we draw conclusions in Section 5.

2. Model specification and some preliminary outcomes

Consider a filtered probability space (Ω,z, (zt)t≥0, P) which satisfies the usual hypotheses of completeness and right
continuity. The process X = (Xt)t≥0 is a hyper-exponential jump diffusion process, i.e.,

Xt = X0 + µt + σWt +

Nt
k=1

Yk, (2.1)

where µ and X0 are constants, {Wt; t ≥ 0} is a standard Brownian motion and σ > 0 is the volatility of the diffusion;
{Nt; t ≥ 0} is a Poisson process with rate λ and {Yk; k = 1, 2, . . .} are independent and identically distributed random
variables supported on R/{0}; moreover, {Wt}t≥0, {Nt}t≥0 and {Yk; k = 1, 2, . . .} are mutually independent; finally, the
probability density function (pdf) of Y1 is given by
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where pi > 0, ηi > 0 for all i = 1, . . . ,m, and η1 < η2 < · · · < ηm; qj > 0, ϑj > 0 for all j = 1, . . . , n, and
ϑ1 < ϑ2 < · · · < ϑn;

m
i=1 pi +

n
j=1 qj = 1. Since X is a Lévy process, we have that X is a strong Markov process

(see, e.g., Theorem 3.1 on page 68 in [13]).
In this paper, we denote by Px the law of X starting from x and let Ex represent the corresponding expectation, and when

x = 0, we write P and E for the sake of brevity. In the following, we are interested in occupation times of X and we want to
derive formulas for the Laplace transform of (1.4) with respect to t , i.e.,
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where p, q > 0 and b ∈ R is a constant; e(q) is an exponential random variable withmean 1
q and independent of the process

X under Px. Before starting the derivation in the next section, we first give some useful results in the following.
For the process X defined by (2.1), its Lévy exponent is given by
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, θ ∈ (−ϑ1, η1). (2.4)

The following lemma characterizes the solution of ψ(θ) = q for q > 0 and is taken from Lemma 2.1 in [14].
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