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a b s t r a c t

There aremany applications inwhich it is necessary to solve large scale parametrizedwave
propagation problems repeatedly. This is still quite a challenging task, evenwith the largest
available computer clusters. In this paperwewill discuss the application ofModelOrder Re-
duction (MOR) to problems in seismic petroleum exploration, with the aim of diminishing
the necessary computing time by a significant factor. We consider POD and some variants.
POD is a Model Order Reduction technique that uses snapshots of a few simulations in or-
der to quickly compute related problems with similar accuracy. The method of lines via
a Petrov–Galerkin approximation that uses the snapshots as basis functions is the consid-
ered approach. The order reduction comes fromprojecting thewave equation discretized in
space to the subspace spanned by the snapshots. This has been shown earlier to work well
in two dimensions. The challenge in three dimensions comes from the size of the spatial
meshes required and the fact that the method usually requires a number of snapshots that
do not fit in fast memory, even for current high end multicore machines. Parallelization is
not an option since it is already used for other aspects of this massive problem.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Seismic exploration is one of many approaches used to obtain information on the underground to locate and extract
oil and gas. The seismic method is used inland and off-shore and consists of introducing man-made sources of energy that
travels through the earth. The back scatter is recorded on sensors called geophones or hydrophones. It is this time data that
is used to produce depthmaps of the earth interior through seismic data processing.With the advent of powerful large scale
clusters of computers it has become possible to simulate the full wave propagation at various levels of complexity (acoustic,
elastic, anisotropic) in order to migrate the data from time to depth to produce three-dimensional maps of the material
properties that affect wave propagation: density, wave speeds and anisotropic parameters.

A 3D seismic survey consists of many shots, i.e., activation of energy sources, say explosions, vibrator trucks or air-guns
and corresponding receiver arrays. Usually, a simple rectangular geometrywith equally spaced sources and receivers is used
and only one source is activated at a time with a recording time of a few seconds, that depends on the depth one wants to
image and the approximate velocity of the involved rock formations. Because of the complexity and the large scale of the 3D
meshes involved the simulation of the time domain wave equation is performed using explicit methods on regular meshes,
on a box that contains the region of interest. A typical 3D survey may have thousands of shots and for each shot thousands
of receivers that record the back scatter, generating enormous data sets that have to be processed.

Repeatedwave equation simulation is used formany different facets of this work, from survey planning and illumination
studies, to imaging, migration from time to depth, reverse time migration, seismic tomography and quality control.
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In recent work we have shown that model order reduction (MOR) is capable of reducing the computational cost of High
Fidelity full acoustic wave simulation for shot interpolation and extrapolation in two-dimensions [1–3], when many prob-
lemswith different source positions (shots) need to be simulated in a seismic survey or for seismic imaging. The requirement
there is accuracy (albeit low, say 3 significant figures) and thus we cannot stray too far from the sources that produced the
snapshots for MOR. We have shown that extrapolating one shot in each direction from the basis shot or interpolating two
interior shots from two end shots works well when the data thus generated is used in a simulation process [3]. Taking
into account the overhead, this doubles the speed at which we can perform this task, where many thousands of shots and
corresponding simulations are required.

The challenge now is to extend this process to three-dimensions in a competitivemanner. To fix our ideas, let us consider
a typical 3D simulation that is performed today on a single multicore machine with 128 GB of fast memory. The number
of nodes in each direction of the spatial mesh are nx = ny = 1541, nz = 613, for a total of n = 1, 455, 679, 453 mesh
points. That is to say, the size of one snapshot in double precision would be approximately 11.6 GB. From our experience in
2D and for the type of source frequencies desired, we expect to needmore than 100 snapshots, i.e., just to hold a copy of the
whole snapshot matrix in core would require more than 1.2 TB, far more than what is available in a modern single machine.
Currently, each High Fidelity simulation of this size takes 3 h in a Sandy bridge box (16 cores, 128 GB memory, 277 GHz).
This corresponds to 16′′ of simulation with a time step dt = 0.00191 (9424 time steps). We could wait for Moore’s Law to
catch up, but then larger problems will come around: elastic and anisotropic wave propagation, higher frequencies and so
on, so that is not the answer.

In this paper we explore a number of avenues to solve this problem competitively using some new variants of MOR. We
observe that a full seismic survey simulation requiresmany thousands of shots and that is where parallelism in a distributed
system is already employed. So, parallelism is not the answer for a single shot problem that fits nicely in core for a high
fidelity simulation.

For the application of interest, the integration domain is a half space that needs to be artificially limited on five sides,
where absorbing boundary conditions should be imposed. Thus, the geometry is very simple (a box), although it would be of
interest to have topography, i.e., a non-planar surface as the top boundary. For this type of large wave propagation problems
it is now routine to use explicit high order methods on uniform meshes, since they are the most efficient and simple ones
available.

The acousticwave equation in three dimensionswith a forcing termand absorbing boundary conditions canbewritten as:

wtt = v2(x, y, z)△w + bu(t) − 2ϵ(x, y, z)wt − ϵ2(x, y, z)w,

where v is the velocity of propagation and the function ϵ decays rapidly away from the artificial boundaries. First, this equa-
tion is discretized in space on a mesh of size n = nx× ny× nz, and k ≪ n snapshots are collected by running one or several
High Fidelity simulations. The snapshots are composed of values of the field variables w(x, y, x, t) at points of the spatial
mesh for selected times, ordered in a vector with indices running first in the z direction and then in the y and x ones. They
are written in this vector form as columns of an n× kmatrix S. An orthogonal basis U for its column space can be generated
either by a truncated SVD process or by an adaptive QR algorithm (see Section 9 of [2]). We then assume that the solution
can be approximated by w = Ua(t). Replacing in the wave equation and discretizing the Laplacian in space we obtain the
reduced order system:

att = UTAUa + UTbu(t) − 2UTD(ϵ)Uat .

Here the matrix A contains the discrete Laplacian plus the last term −ϵ2w. We use an 8th order discretization of the
Laplacian [4], which leads to an n × n sparse, structured matrix, with only 25 nonzero elements per row that is stored in
sparse mode. b is a vector that describes where the forcing function u(t) is applied. For a point source, b is all zeros except
at the source index, where it is equal to 1. Finally D(ϵ) is a diagonal matrix. Thus, the main pre-processing task, besides
obtaining the snapshots and the orthogonal basis, is to calculate UTAU . Either of these procedures requires all the snapshots
to be present in fast memory to be competitive and since for the problem sizes we are interested in this is not feasible we
will explore in this paper other alternatives:

(a) The reduction to a lower order system can also be attained without orthogonalization, as we explain in Section 2
on Oblique Projection , where a well conditioned basis is created using a progressive adaptive QR algorithm in reduced row
space; (b)we can performMORusing only a limited number of rows of the snapshotmatrix (i.e., rows associatedwith spatial
mesh points selected through a nr × nmatrix C) and (c) we can get snapshots from selected simulations by only integrating
part of the total time.

We also consider the use of randomized algorithms [5–7] to speed up the linear algebra steps that are required to project
the high fidelity equations into the reduced ones. Because of the availability of fast least squares solvers for large matrices
we will also consider applying them to the oblique projection algorithm.

In order to reduce the computing cost even further we also investigate in Section 5 the use of incoherent encoded sources
or super-shots. At this point, the winning combination seems to be MORwith oblique projection (i.e., no orthogonalization)
and the use of the compacted snapshots with a limited number of rows or Monte Carlo abbreviated multiplication, to
generate the coefficients and reduce the size of the least squares problems that arise. We give some preliminary numerical
results for the oblique projection method for large problems in 2D and 3D.
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