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a b s t r a c t

This work presents a new algorithm to compute eigenpairs of large unsymmetric matrices.
Using the Induced Dimension Reduction method (IDR(s)), which was originally proposed
for solving systems of linear equations, we obtain aHessenberg decomposition, fromwhich
we approximate the eigenvalues and eigenvectors of a matrix. This decomposition has
two main advantages. First, IDR(s) is a short-recurrence method, which is attractive for
large scale computations. Second, the IDR(s) polynomial used to create this Hessenberg
decomposition is also used as a filter to discard the unwanted eigenvalues. Additionally,
we incorporate the implicitly restarting technique proposed by D.C. Sorensen, in order to
approximate specific portions of the spectrum and improve the convergence.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

A variety of applications involve the solution of the eigenvalue problem. This problem consists in finding a subset of pairs
(λ, x) of a matrix A ∈ Cn×n, such that:

Ax = λx, (1)

where λ ∈ C is called eigenvalue, and the nonzero vector x ∈ Cn is its corresponding eigenvector. When the matrix A is
large and unsymmetric, solving the eigenvalue problem becomes computationally challenging.

Methods to approximate a subset of eigenpairs of large unsymmetric matrices are usually based on the construction of
a standard Hessenberg decomposition associated with the matrix A, i.e.

AUm = UmBm + um+1eTm, (2)

where Um ∈ Cn×m, Bm is a Hessenberg matrix of order m, um+1 ∈ Cn, and em is the mth canonical vector, with m
being typically much smaller than n. Under certain conditions, the eigenvalues of the matrix Bm approximate a subset of
eigenvalues of A.

The Induced Dimension Reduction (IDR(s)) was introduced in 2008 for solving systems of linear equations [1]. IDR(s) is a
short-recurrence method which has obtained attention for its rapid convergence and computational efficiency. IDR(s) as a
method to compute eigenvalueswas first studied byM.H. Gutknecht and J.-P.M. Zemke in [2]. Thework thatwepresent here
is a continuation of [3].We describe how to obtain an underlying Hessenberg decomposition of the form (2) from IDR(s), and
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we combine it with the implicitly restarting technique introduced by D.C. Sorensen [4] for Arnoldi in order to approximate
the eigenpairs of interest. Additionally, we suggest a parameter selection for our proposed method which defines a filter
polynomial for the spectrum.

This document is structured as follows. In Section 2, we present an overview of the Hessenberg decompositions, which
are the basis for large scale eigenvalues/eigenvectors approximation. Section 3 explains how to compute a Hessenberg
decomposition based on the IDR method. Two techniques to refine the information obtained from the IDR-Hessenberg
factorization are discussed in Section 4. In Section 5, we present numerical experiments to illustrate the behavior of the
method proposed.

We use the following notation: capital letters denote matrices, and the transpose of a matrix A is represented by AT .
Column vectors are represented by bold-face, lower case letters. Greek lower case letters represent complex scalars. In is
the identity matrix of order n, and wherever the context is clear the subindex n is eliminated. Subspaces are denoted by
uppercase calligraphic letters.

2. Background on Hessenberg decompositions

In Eq. (2), the columns of the matrix Um represent a basis for the Krylov subspace,

Km(A, x) = {x, Ax, A2x, . . . , Am−1x}. (3)

The upper Hessenberg matrix Bm is the projection of the matrix A over Km(A, x). Projections onto Krylov subspaces are
the basis for several methods to solve system of linear equations and eigenpairs approximation (see for example [5,6]). To
compute eigenvalues of large, unsymmetric, and sparse matrices, the most common options between the Krylov methods
are Bi-Lanczos [7] and the Arnoldi method [8]. Each of them creates a different Hessenberg decomposition associated with
the matrix A. Bi-Lanczos method uses a short-recurrence formulas to create two Hessenberg tridiagonal decompositions of
the form

AVm = VmTm + feTm
and

ATWm = WmT T
m + seTm,

where em is the mth canonical vector, f and s ∈ Cn, Tm ∈ Cm×m is a tridiagonal matrix, the matrix Vm ∈ Cn×m is a basis for
Km(A, v1), Wm ∈ Cn×m is a basis for Km(AT ,w1) and the matrices Vm and Wm are bi-orthogonal (W T

mVm = Im). However,
despite being an efficient short-recurrence method, Bi-Lanczos is numerically unstable (see [9]).

Arnoldi method, on the other hand, builds a Hessenberg decomposition

AVm = VmHm + feTm,

where f ∈ Cn and Vm is a matrix with orthogonal columns and represents a basis for Km(A, v1). This method is widely used
to approximate a subset of the eigenpairs of A; nevertheless, its computational and memory cost increases per iteration.
An option to overcome this issue is to restart the process (see [10]). Other Hessenberg decompositions to approximate
eigenpairs based on Newton and Chebyshev polynomials can be found in [11–14].

The IDR(s) is a Krylov method proposed for solving systems of linear equations. It is based on the following theorem.

Theorem 1. Let A be any matrix in Cn×n, let P = [p1, p2, p3, . . . , ps] be an n × s matrix, and let {µj} be a sequence in C. With
G0 ≡ Cn, define

Gj+1 ≡ (A − µj+1I)(Gj ∩ P⊥) j = 0, 1, 2 . . . ,

where P⊥ represents the orthogonal complement of P. If P⊥ does not contain an eigenvector of A, then, for all j = 0, 1, 2 . . . ,
the following hold:

1. Gj+1 ⊂ Gj, and
2. dimension (Gj+1) < dimension (Gj) unless Gj = {0}.

Proof. See [15,1]. �

In order to solve a system of linear equations, IDR(s) forces the residual vector rk = b − Axk to be in the nested and
shrinking spaces Gj, and then extracts the approximate solution xk. In the original implementations of IDR(s), the authors do
not create explicitly any Hessenberg decomposition [1,16]. M. H. Gutknecht and J.-P. M. Zemke in [17] deduce a generalized
Hessenberg decomposition from the IDR(s) method

AWmUm = WmĤm + weTm, (4)

from which only the eigenvalues values of A are approximated by the solution of the eigenvalue pencil (Ĥm,Um). Here the
matrices Um and Ĥm are in Cm×m, with Um upper triangular and, Hm is a Hessenberg matrix. The matrix Wm is not explicitly
built.
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