

Contents lists available at ScienceDirect

Journal of Computational and Applied Mathematics

journal homepage: www.elsevier.com/locate/cam

On Mittag-Leffler distributions and related stochastic processes

Thierry E. Huillet

Laboratoire de Physique Théorique et Modélisation, CNRS-UMR 8089 et Université de Cergy-Pontoise, 2 Avenue Adolphe Chauvin, 95302, Cergy-Pontoise, France

ARTICLE INFO

Article history: Received 13 July 2015 Received in revised form 21 September 2015

Keywords:
Mittag-Leffler random variables and processes
Stochastic growth models
Neveu branching process with infinite mean
Immigration and self-decomposability
Renewal process
Bolthausen-Sznitman coalescent

ABSTRACT

Random variables with Mittag-Leffler distribution can take values either in the set of non-negative integers or in the positive real line. They can be of two different types, one (type-1) heavy-tailed with index $\alpha \in (0,1)$, the other (type-2) possessing all its moments. We investigate various stochastic processes where they play a key role, among which: the discrete space/time Neveu branching process, the discrete-space continuous-time Neveu branching process, the continuous space/time Neveu branching process (CSBP) and renewal processes with rare events. Its relation to (discrete or continuous) self-decomposability and branching processes with immigration is emphasized. Special attention will be paid to the Neveu CSBP for its connection with the Bolthausen–Sznitman coalescent. In this context, and following a recent work of Möhle (2015), a type-2 Mittag-Leffler process turns out to be the Siegmund dual to Neveu's CSBP block-counting process arising in sampling from PD (e^{-t} , 0). Further combinatorial developments of this model are investigated.

© 2015 Elsevier B.V. All rights reserved.

1. Sibuya random variables (rvs) and related branching processes

We first investigate a class of integral-valued rvs that will show important for our general purpose.

1.1. Sibuya rvs and related ones

We start with their definition and main properties.

• One parameter Sibuya (α) rv. Let $X_{\alpha} \geq 1$ be an integer-valued random variable with support $\mathbb{N} = \{1, 2, \ldots\}$ defined as follows:

$$X_{\alpha} = \inf(l \geq 1 : \mathcal{B}_{\alpha}(l) = 1),$$

where $(\mathcal{B}_{\alpha}(l))_{l\geq 1}$ is a sequence of independent Bernoulli rvs obeying $\mathbf{P}(\mathcal{B}_{\alpha}(l)=1)=\alpha/l$ where $\alpha\in(0,1)$. It is thus the first epoch of a success in a Bernoulli trial when the probability of success is inversely proportional to the number of the trial. X_{α} is called a Sibuya (α) rv. Then

$$\mathbf{P}(X_{\alpha} = k) = (-1)^{k-1} {\alpha \choose k}, \quad k \ge 1,$$

E-mail address: Thierry.Huillet@u-cergy.fr.

with $\binom{\alpha}{k} = (\alpha)_k / k!$, $(\alpha)_k := \Gamma(\alpha + 1) / \Gamma(\alpha + 1 - k) = \alpha(\alpha - 1) \cdots (\alpha - k + 1)$, the Pochhammer's symbol (or decreasing factorial). Its probability generating function (pgf) is

$$\phi_{\alpha}(z) := \mathbf{E}(z^{X_{\alpha}}) = 1 - (1 - z)^{\alpha}, \quad z < 1.$$

We note that $\mathbf{P}(X_{\alpha} = k)$ is also $\mathbf{P}(X_{\alpha} = k) = \alpha [\overline{\alpha}]_{k-1}/k!$, where $\overline{\alpha} := 1 - \alpha$ and $[a]_k := a(a+1)\cdots(a+k-1)$, $k \ge 1$, are the rising factorials of a with $[a]_0 := 1$.

• Discrete-stable (μ, α) rv [1]. Consider the random variable $S_{\mu,\alpha}$ given by the random sum

$$S_{\mu,\alpha} = \sum_{l=0}^{P_{\mu}} X_{\alpha} (l) ,$$

where P_{μ} is Poisson distributed with mean $\mu > 0$ and $(X_{\alpha}(l))_{l \geq 0}$ is an iid sequence of Sibuya (α) rvs $(X_{\alpha}(l) \stackrel{d}{=} X_{\alpha})$, independent of P_{μ} . Then $\phi_{P_{\mu}}(z) = \mathbf{E}(z^{P_{\mu}}) = e^{-\mu(1-z)}$ and

$$\phi_{S_{\alpha,\mu}}(z) = \phi_{P_{\mu}}(\phi_{\alpha}(z)) = e^{-\mu(1-z)^{\alpha}}$$

the pgf of a discrete-stable (α, μ) rv, say $S_{\alpha,\mu}$. We will come back to this distribution below. Note that, with $S_{\alpha} := S_{\alpha,1}$, and in view of $S_{\alpha,\mu} \stackrel{d}{=} \mu^{1/\alpha} \circ S_{\alpha}$, μ is the scale parameter of $S_{\alpha,\mu}$.

• Scaled Sibuya (α, λ) rv. Let $c \in (0, 1)$. Define the c-thinned version of the rv X_{α} , say $X_{\alpha,c} := c \circ X_{\alpha}$, as the random sum

$$X_{\alpha,c} = c \circ X_{\alpha} \stackrel{d}{=} \sum_{l=1}^{X_{\alpha}} B_{c}(l)$$

with $(B_c(l))_{l\geq 1}$ a sequence of independent and identically distributed (iid) Bernoulli variables such that $\mathbf{P}(B_c(1)=1)=c$, independent of X_α . This binomial thinning operator, acting on discrete rvs, has been defined by [1]; it stands as the discrete version of the change of scale (note that if X=n is a constant integral rv, $c\circ X$ is random with $\mathrm{bin}(n,c)$ distribution). The pgf of $X_{\alpha,c}$ is

$$\phi_{\alpha,c}(z) := \mathbf{E}(z^{X_{\alpha,c}}) = \phi_{X_{\alpha}}(1 - c(1 - z)) = 1 - (c(1 - z))^{\alpha}, \quad z \le 1.$$

With $\lambda = c^{\alpha} \in (0, 1)$, we shall therefore call a rv $X_{\alpha, \lambda}$ with pgf $\phi_{\alpha, \lambda}(z) = 1 - \lambda (1 - z)^{\alpha}$ a scaled Sibuya (α, λ) rv, with scale parameter λ , obeying $X_{\alpha, \lambda} \stackrel{d}{=} \lambda^{1/\alpha} \circ X_{\alpha}$. $X_{\alpha, \lambda} \geq 0$ is now an integer-valued random variable with support $\mathbb{N}_0 = \{0, 1, 2, \ldots\}$, satisfying

$$\pi_{\alpha,\lambda}(0) := \mathbf{P}(X_{\alpha,\lambda} = 0) = 1 - \lambda$$
 and

$$\pi_{\alpha,\lambda}(k) := \mathbf{P}\left(X_{\alpha,\lambda} = k\right) = \lambda \left(-1\right)^{k-1} {\alpha \choose k} = \alpha \lambda \frac{[\overline{\alpha}]_{k-1}}{k!}, \quad k \ge 1.$$
 (1)

Both $X_{\alpha,\lambda}$ and $X_{\alpha} = X_{\alpha,1}$ are heavy-tailed with exponent α : $\mathbf{P}(X > k) = L(k) k^{-\alpha}$ for some slowly-varying sequence L(k).

• *Main properties* [2]. The rv $X_{\alpha,\lambda}$ is infinitely divisible (ID), or compound Poisson, iff $\lambda \leq 1 - \alpha$. This follows from the fact that, with $\mu = -\log(1 - \lambda) \leq -\log\alpha$

$$\phi_{\alpha,\lambda}(z) = 1 - \lambda (1 - z)^{\alpha} = e^{-\mu(1 - h(z))}$$

for some absolutely monotone pgf h(z) (the pgf of the sizes of the batches), obeying h(0) = 0.

It is even discrete self-decomposable (and thus unimodal) iff $\lambda \leq (1-\alpha)/(1+\alpha)$ with $X_{\alpha,\lambda}$ self-decomposable $\Rightarrow X_{\alpha,\lambda}$ ID, [1]. We will come back to this self-decomposability property below.

• Three-parameters Sibuya (α, β, λ) rv. Let $\beta > 0$. If $X_{\alpha, \lambda}$ is ID (else if $\lambda \leq 1 - \alpha$), then for all $\beta > 0$

$$\phi_{\alpha,\beta,\lambda}(z) = (1 - \lambda (1 - z)^{\alpha})^{\beta}$$

is the pgf of some rv $X_{\alpha,\beta,\lambda}$, called a generalized Sibuya (α,β,λ) rv. This is because, under our assumptions, $X_{\alpha,\lambda}$ is compound Poisson.

1.2. Branching processes involving Sibuya rvs: discrete space-time Neveu process

We describe here an integral-valued Bienaymé–Galton–Watson branching process in discrete time whose branching mechanism is a Sibuya(α , λ) rv. It turns out that the population size at generation n is itself again a Sibuya(α _n, λ _n) rv, so computable. We call it the discrete Neveu process. We investigate some of the consequences of this remarkable fact.

• Branching process with Sibuya (α, λ) offspring distribution (discrete-time). Let $\phi_{\alpha_1, \lambda_1}(z)$ and $\phi_{\alpha_2, \lambda_2}(z)$ be the pgfs of two independent scaled Sibuya rvs with parameters (α_1, λ_1) and (α_2, λ_2) . We have the stability under composition property

$$\phi_{\alpha_2,\lambda_2}\left(\phi_{\alpha_1,\lambda_1}\left(z\right)\right) = \phi_{\alpha_2\alpha_1,\lambda_2\lambda_1^{\alpha_2}}\left(z\right).$$

Download English Version:

https://daneshyari.com/en/article/4638166

Download Persian Version:

https://daneshyari.com/article/4638166

<u>Daneshyari.com</u>