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a b s t r a c t

The magnetoencephalography (MEG) aims at reconstructing the unknown neuroelectric
activity in the brain from the measurements of the neuromagnetic field in the outer space.
The localization of neuroelectric sources from MEG data results in an ill-posed and ill-
conditioned inverse problem that requires regularization techniques to be solved. In this
paper we propose a new inversion method based on random spatial sampling that is
suitable to localize focal neuroelectric sources. The method is fast, efficient and requires
little memory storage. Moreover, the numerical tests show that the random sampling
method has a high spatial resolution even in the case of deep source localization fromnoisy
magnetic data.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Magnetoencephalography (MEG) [1] is a completely non-invasive imaging technique to map the neuroelectric activity
from the measurements of the magnetic field that the activity itself induces outside the head. Due to its high temporal
resolution – in the millisecond scale [2] – MEG is particularly attractive for mapping fast cerebral responses to spontaneous
and/or evoked stimuli. From the analysis of the temporal evolution of the measuredmagnetic field distribution we can infer
just partial information on the localization of active brain regions. In order to better focus neuroelectric sources, we have
to solve the neuroelectric inverse problem aiming at reconstructing the neuronal current image once a measured magnetic
field distribution outside the head is given.

Since the magnetic field decreases very fast as the distance between the electric sources and the sensor sites increases,
the measured magnetic field may be very weak. For this reason MEG magnetometers are equipped with SQUIDs (Super-
conducting Quantum Interference Devices), which are very sensitive detectors of the magnetic flux [1]. Moreover, MEG
measurements are affected by high noise due to electromagnetic sources in the external environment and to the bioelectric
activity generated by the muscular activity of the patient himself. Usually, these disturbances generate a magnetic signal of
strength comparable with the signal of interest.

Another challenge of MEG is in its ill-conditioned nature; in fact, the radial – w.r.t. the inner skull – component of the
neuroelectric current does not produce any magnetic field in the outer space and cannot be detected. This means that a
single measured field could be generated by an infinite number of current distributions and further assumptions could be
made in order to force the inverse problem to have a unique solution [3].

When solving the MEG inverse problem, we are interested in reconstructing the neuroelectric current image with high
accuracy – in the order of few millimeters – having available only few magnetic data—usually, a few hundreds. Thus, the
MEG inverse problem can be seen as an inverse problemwith incomplete data. On the other hand, neurophysiologic studies
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have put in evidence that the neuroelectric current distribution is localized in small regions of the brain, i.e. the neuroelectric
current distribution is spatially sparse. As a consequence, it is reasonable to expect that only few elementary sources might
be sufficient to characterize and reconstruct the unknown current vector [4–6].

After these observations, in this paper we propose a new method based on random sampling, suitable to solve the MEG
inverse problem under the sparsity assumption. The key ingredient of the method lies in the fact that we represent the
electric current distribution we want to reconstruct by a sample ensemble of few localized elementary sources. Under the
sparsity assumption, just few elementary sources, randomly chosen from a large dictionary, are sufficient towell reconstruct
the unknown current distribution. Some first results on the solution of the MEG inverse problem by the random sampling
method can be found in [7] where it is shown that random sampling reduces significantly the ill-conditioning of the inverse
problem so acting as a regularization technique. Moreover, the algorithm requires little memory storage and is very fast.
Here, we deal with the problem of localizing focal deep sources from noisy magnetic data and show that the random
sampling method combined with a shrinkage method has a high spatial resolution so that it can be effectively used in
neuroimaging applications.

The paper is organized as follows. In Section 2, we recall the model usually used to describe the MEG forward problem
and set theMEG inverse problem. In Section 3we describe the random samplingmethod for the solution of theMEG inverse
problem. Section 4 is devoted to several numerical tests showing the good performances of the proposed method. Finally,
Section 5 contains some comments and conclusions.

2. The MEG forward and inverse problems

Following the classical model by Geselowitz [8,9], we describe the head as a conductor consisting of homogeneous,
nested, non intersecting regions, Vi, i = 0, . . . ,m, each one having constant conductivity, σi. In the following we assume
that the neuroelectric current flows just inside the innermost region V0, which represents the brain. From the quasi-static
Maxwell’s equations, it follows that the electric current density J(r) flowing in V0, and the external magnetic field B(r), with
r outside Vm, are related by the Biot–Savart law

B(r) =
µ0

4π


V0

J(r′)× (r − r′)
|r − r′|3

dr′, (2.1)

where µ0 is the magnetic permeability in the vacuum.
The magnetometers are located in N sites, qi, i = 1, . . . ,N , that belong to a surface Σ external to the head. Each

magnetometermeasures themagnetic field along the direction e(qi), which is the normalw.r.t.Σ in qi. Now, letBe(qi, J) :=

B(qi) · e(qi) be the integral operator relating the neuroelectric current and the magnetic field it generates in qi, projected
along e(qi). Recalling that for any three vectors in R3 it holds (v × w) · z = −(z × w) · v, we obtain the relation

Be(qi, J) =
µ0

4π


V0


e(qi)×

r′ − qi

|r′ − qi|
3


· J(r ′) dr ′, (2.2)

which is linear w.r.t. J (here, v × w and v · w are the usual cross and scalar products of vectors in R3, respectively, and |v| is
the Euclidean norm).

In a realistic head geometry the forward MEG problem cannot be solved analytically, therefore numerical methods are
needed. Usually, to solve numerically the forward problem, Boundary Element Method, Finite Element Method or Finite
Difference Method are used [10,11]. All these methods require a large number of computational points to achieve high
spatial resolution so that they both require high memory storage and have high computational load.

Having at hand the forward model, we can set the MEG inverse problem. This consists in estimating the neuroelectric
current distribution J from the measurements of the external magnetic field, Gi, i = 1, . . . ,N . Therefore, the MEG inverse
problem lies in minimizing the discrepancy

∆(J) =

N
i=1

(Gi − Be(qi, J))2, (2.3)

w.r.t. the current distribution J, once the measurements Gi, i = 1, . . . ,N , are given. Since the integral operator (2.2) has
a non-trivial kernel, additional constraints, coming from the physics of the problem, have to be added so that the inverse
problem has a unique solution [12,3]. This a priori information must be included into the inversion method to produce a
physically meaningful solution. Our aim is to use sparsity assumption and random sampling to reduce the dimensionality
of the inverse problem and, at the same time, its ill-conditioning.

3. The random sampling method

To solve the inverse problem we model the total current as a sum of a finite number of elementary sources, i.e.

J(r) ≈

M
k=1

Jk ψk(r), (3.1)
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