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a b s t r a c t

In this work we study a nonlinear wave equation, depending on different norms of the
initial conditions, has bounded solution for all t > 0 or 0 < t < T0 for some T0 > 0.We also
prove that the solution may blow-up at T0. Proofs of some the analytical results listed are
sketched or given. For approximate numerical solutions we use the finite element method
in the spatial variable and the finite difference method in time. The nonlinear system for
each time step is solved by Newton’s modified method. We present numerical analysis for
error estimates and numerical simulations to illustrate the convergence of the theoretical
results. We present too, the singularity points (x∗, t∗), where the blow-up occurs for
different ρ values in a numerical simulation.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Let Ω be a bounded open set of Rn, with C1boundary and Q be the cylinder Ω × (0, T ) of Rn+1 for T > 0, with lateral
boundary represented by Σ = Γ × (0, T ). We shall consider the following nonlinear problem:utt − 1u + |u|ρ = f in Q , ρ > 1

u = 0 on Σ,
u(0, x) = u0(x), ut(0, x) = u1(x), ∀x ∈ Ω.

(1)

The solution of problem (1) is a function u = u(x, t) depending on time t and spatial variable x.
A special case of this problem, with ρ = 2, has been studied in [1], and despite the simple form, the problem (1) has

interesting properties. To illustrate the difficulties involved, we shall follow the classical procedure, to obtain the energy
inequality for the wave equation and consider f = 0 for simplicity.

Applying the inner product in L2(Ω) of Eq. (1) 1 with ut and integrating over [0, t], provided that there has been sufficient
regularity of terms of the partial differential equations (1), we obtain the following inequality

|ut(t)|2 + |∇u(t)|2 +
2

ρ + 1


Ω

u(t)|u(t)|ρdΩ ≤ |u1|
2
+ |∇u0|

2
+

2
ρ + 1


Ω

u0|u0|
ρdΩ, (2)

where, | · | is the norm in L2(Ω).
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The term involving the integral, has no definite sign, so the relation (2) cannot ensure that |u(t)| and |∇u(t)| are limited.
In fact, it has been proved, (see [1] for ρ = 2 or [2]), that a solution of (1) exists for sufficiently small initial data and source
term, for every T > 0. In addition, it was proved in [2] that for any initial conditions, the solution is restricted to some time
interval and we will confirm this result theoretically and numerically.

Furthermore, in [3], it was proved for a more general nonlinear partial differential equations, that for sufficiently large
initial conditions even without the source term, the solution blows up in finite time. The hypotheses in that work are not
satisfied by the solution of the problem (1), especially the requirement that it be of class C2. But an adaptation of the
technique leads to similar result displaying the blowing up, using conditions compatible with the existence theorem.

On the other hand, in numerical analysis, we are primarily interested in semi-discrete error and fully discrete error
analysis and numerical simulation, rather than aspects of energy conservation of the wave equation. There are many
numerical results concerning energy behavior under the presence of a dissipative mechanism for hyperbolic equation,
among them we can mention [4,5].

In [6], they investigated the question of finding a numerical schemes that preserve rigorously the discrete energy, for
nonlinear wave equations. Such schemes are well known in the linear case, and conservation of energy automatically
provides the stability of the Newmark scheme when θ ≥ 1/4 since the energy is always positive. In particular, when θ = 0,
then we have the well-known leap-frog scheme, for which a discrete energy is also conserved.

There are a variety of numerical methods using finite element discretizations for hyperbolic equation of second order,
among them we can mention, Dupont [7] and Wheeler [8], who obtained error estimates for the approximate solution of
hyperbolic equation using the Galerkin method.

An outline of this paper follows: Section 2, we will only state the existence and uniqueness theorem of solution to the
problem (1). If restrictions on norms of u0, u1 and f are satisfied the solution applies for all t > 0. Moreover, the solution
is local in t if these are not met. Furthermore, in this case, it ensures that the standard Lp(Ω) norm of u(x, t) will tend to
infinity as t tends to a given t0, for all p ∈ [1, ∞] and we shall prove this result.

In Section 3, we present the numerical method from the variational formulation, with the finite element method for
spatial discretization and the finite difference method for solving a system of differential equations of second order in time.
It also presented the modified Newton’s method for solving nonlinear system in one dimensional case.

In Section 4,we present some numerical simulations to validate the numericalmethod employed. Some tables for various
meshes showing the order of convergence as well as the graphs of numerical solutions are also presented and tables with
singularity points (x∗, t∗) where the blow-up occurs, for different ρ values.

2. Analytical results

Let ((·, ·)), ∥ · ∥ and (·, ·), | · | be respectively the scalar product and the norms in H1
0 (Ω) and L2(Ω). Thus, when we write

|u| = |u(t)|, ∥u∥ = ∥u(t)∥ it will mean the L2(Ω), H1
0 (Ω) norm of u(x, t) respectively. For convenience, we will use the

prime ( ′ ) to denote the derivative with respect to time t .
For the next theorem, we need that the initial data are small, i.e., consider the following hypothesis:

(H1) ∥u0∥ < C
−(

ρ+1
ρ−1 )

0 , γ (u0, u1) <


ρ−1
ρ+1


C

−2( ρ+1
ρ−1 )

0 ,

where C0, is the constant immersion of H1
0 (Ω) in Lρ+1(Ω) and γ (u0, u1) as defined in the following theorem.

The proof of the following theorem, can be found in [2].

Theorem 1. Let Ω be an open set, limited to Rn with regular boundary and ρ > 1 satisfying ρ ≤
2n
n−2 , if n ≥ 3. Consider

u0 ∈ H1
0 (Ω), u1 ∈ L2(Ω), f ∈ L1(0, ∞; L2(Ω)), and the function

γ (u0, u1) =


|u0|

2
+ ∥u1∥

2
+

2
ρ + 1


Ω

|u0|
ρu0dΩ + ∥f ∥1,2


exp∥f ∥1,2 , (3)

where ∥ · ∥1,2 is the norm in L1(0, ∞; L2(Ω)). Suppose that the initial data satisfy the hypothesis (H1). Then, there is an unique
non local solution to the problem (1), for all T > 0, satisfying u ∈ L∞(0, T ;H1

0 (Ω)) and ut ∈ L∞(0, T ; L2(Ω)).
On the other hand, if the hypothesis (H1) is not satisfied, there is T0, dependent of {ρ, ∥uo∥, |u1|, f }, such that the

problem (1) has a local solution satisfying u ∈ L∞(0, T0;H1
0 (Ω)) and ut ∈ L∞(0, T0; L2(Ω)).

Proof. In this proof, we will do the same procedure as the demonstrations in [2] with some changes that simplify the
calculus. Due to restrictions in the available space, the more traditional techniques were omitted and can be found in [1]
or [2].

Let (wn)n∈N be an orthonormal system in L2(Ω), whose space generated is contained and dense in H1
0 (Ω). We represent

by Vm the subspace generated by vectors {w1, w2, . . . , wm}. We propose the following approximate problem: Determine
um : [0, Tm) → Vm, so that:

(u′′

m(t), w) + (∇um(t), ∇w) + (|um(t)|ρ, w) = (f (t), w), ∀w ∈ Vm

(um(0), w) = (u0, w),

(u′

m(0), w) = (u1, w).

(4)
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