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a b s t r a c t

Given a two-dimensional correlateddiffusionprocess,wedetermine the joint density of the
first passage times of the process to some constant boundaries. This quantity depends on
the joint density of the first passage time of the first crossing component and of the position
of the second crossing component before its crossing time. First we show that these
densities are solutions of a system of Volterra–Fredholm first kind integral equations. Then
we propose a numerical algorithm to solve it and we describe how to use the algorithm to
approximate the joint density of the first passage times. The convergence of the method
is theoretically proved for bivariate diffusion processes. We derive explicit expressions for
these and other quantities of interest in the case of a bivariate Wiener process, correcting
previous misprints appearing in the literature. Finally we illustrate the application of the
method through a set of examples.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction and motivation

The first passage time (FPT) problem of univariate stochastic processes through boundaries is relevant in different
fields, e.g. economics [1], engineering [2], finance [3,4], neuroscience [5,6], physics [7], psychology [8] and reliability theory
[9,10]. For one-dimensional processes, the FPT problem has beenwidely analytically investigated both for constant and time
dependent boundaries [11,12,5], yielding explicit expressions for the FPT density of the Wiener process [13], of a special
case of the Ornstein–Uhlenbeck (OU) process [14], of the Cox–Ingersoll–Ross (also known as Feller or square-root) process
[15,16] and of some processes which can be obtained through suitable measure or space–time transformations of the
previous processes [11,15,17]. For most of the processes arising from applications, closed form expressions are not available
but it was proved that the FPT distribution function is solution of integral equations. This has determined the development
of ad hoc numerical methods for the solution of Volterra integral equations of the first and second types arising from both
the direct and the inverse FPT problem [18–23].

Results for the FPT problem of bivariate processes are still scarce and fragmentary. Analytic results are available for
bivariate FPTs through specific surfaces [24,25], for the FPTs of a Wiener and of an integrated process [26–29] and for the
FPTs of two correlated Wiener processes with zero [30–32] or positive drift [33] in presence of absorbing boundaries.
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The main goal of this paper is to investigate the bivariate joint distribution of the hitting times of a bivariate diffusion
process. A new difficulty arises with respect to the univariate case: the dynamics of the process after the first crossing
depend on the type of considered boundaries. Indeed the first component attaining its boundary can stop its evolution, be
absorbed there or pursue its evolution depending on whether the boundaries are killing, absorbing or crossing, respectively.
In all cases, the slowest component evolves till its passage time. The different boundary conditions are defined in Section 2
together with some furthermathematical background. The different scenarios are studied in Section 3, wherewe also derive
the joint FPT densities in the three cases. Conscious of the important role of Volterra Integral equations in the univariate FPT
problem, here we extend the approach used in the one dimensional case [18] or in the FPT problem of a component of a
Gauss Markov process [34]. These quantities depend on the joint densities of the second crossing component before its FPT
and the FPT of the first crossing component, which we show to be the solutions of a system of Volterra–Fredholm first kind
integral equations [35]. In Section 4 we propose a numerical method to solve the system and we describe how to obtain
the joint FPT density using our algorithm. Since the dynamics of the process before the first crossing time are the same for
all types of boundaries, the proposed method can always be used. In Section 5 we prove the convergence of the algorithm
and we study its order of convergence. A useful feature of the proposed algorithm is that it allows to avoid the prohibitive
computational effort required for simulating the joint density of the FPTs [36]. Indeed it allows to switch from aMonte Carlo
simulation method [37] to a deterministic numerical method.

To numerically illustrate the convergence of the method, we consider two correlatedWiener processes and compare the
theoretical and the numerical results. The desired joint density of the second crossing component before its FPT and the
FPT of the first crossing component can be obtained starting from the joint density of the process constrained to be below
the boundaries, which is available in [33,31,37]. The formulas for the driftless case presented in [31] contain misprints,
which have been independently corrected in [33,37]. In [31] the case with drift is also considered, but unfortunately some
expressions present further misprints. Since we have not been able to locate correct results elsewhere in the literature, in
Section 6we correct these formulas and determine other quantities of interest. In particular we calculate the joint density of
the position of the process constrained to be below the boundaries, of the FPTs bothwith andwithout drift and of the second
crossing component before its FPT and the FPT of the first crossing component. A comparison of this last density with its
numerical approximation obtained using the algorithm is presented in Section 7. There we also illustrate the application of
our method to approximate the joint FPT density of a bivariate OU process with correlated components. This is particularly
relevant in neuroscience, where FPTs are used to describe neural action potentials (spikes) and multivariate OU processes
can be used to model neural networks, as recently discussed in [38].

2. Mathematical background

Consider a two-dimensional time homogeneous diffusion process X =

(X1, X2)

′(t); t > t0

, solution of the stochastic

differential equation

dX(t) = µ(X(t))dt + Σ (X(t)) dW(t), X(t0) = x0 =

x01,x02

′
, t > t0, (1)

where ′ indicates vector transpose. HereW (t) is a two-dimensional standardWiener process, the R2-valued functionµ and
the R2

× R2 matrix-valued function Σ are assumed to be defined and measurable on R2 and all the conditions on existence
and uniqueness of the solution are satisfied [39].

Define the random variable

Ti = inf{t > t0 : Xi (t) > Bi} i = 1, 2,

i.e. the FPT of Xi through the constant boundary Bi > x0i. We denote by T = min(T1, T2) the random variable corresponding
to the first exit time ofX from the strip (−∞, B1)×(−∞, B2). Our goal is to determine the joint probability density function
(pdf) of (T1, T2) for a process X originated in y = (y1, y2) at time s, defined by

f(T1,T2)(t1, t2|y, s) :=
∂2

∂t1∂t2
P(T1 < t1, T2 < t2|X(s) = y).

Throughout the paper we consider the following densities for i, j = 1, 2, i ≠ j and s < t:

• joint pdf of the components of the process X up to time T , defined by

f aX (x, t|y, s) :=
∂2

∂x1∂x2
P (X(t) < x, T > t|X(s) = y) ;

• conditional pdf of Xi given Xj up to time T , defined by

f aXi|Xj(xi, t|xj, t; y, s) :=
∂

∂xi
P(Xi(t) < xi, Ti > t|Xj(t) = xj, Tj > t,X(s) = y);
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