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a b s t r a c t

Shape optimization based on surface gradients and the Hadamard-form is considered for a
compressible viscous fluid. Special attention is given to the difference between the ‘‘func-
tion composition’’ approach involving local shape derivatives and an alternate methodol-
ogy based on the weak form of the state equation. The resulting gradient expressions are
found to be equal only if the existence of a strong form solution is assumed. Surface shape
derivatives based on both formulations are implemented within a Discontinuous Galerkin
flow solver of variable order. The gradient expression stemming from the variational ap-
proach is found to give superior accuracy when compared to finite differences.

© 2015 Elsevier B.V. All rights reserved.

0. Introduction

Shape optimization is a research field that has received much attention in the past. In general, any problem where the
boundary of the domain is part of the unknown can be considered a shape optimization problem. In most applications, the
physics aremodeled by partial differential equations, making shape optimization a special sub-class within the field of PDE-
constrained optimization. Usually, the derivation of the sensitivities and adjoint equations follows a function composition
approach, i.e. some set of design variables defines the geometry and within this geometry the PDE is solved, thereby
generating the state variables that enter the objective function [1–3]. Therefore, the necessity to consider sensitivities or
derivative information with respect to the geometry adds additional complexity to the shape optimization problem when
compared to general PDE-constrained optimization. Because it is often not immediately clear how to compute these ‘‘mesh
sensitivities’’, that is the variation of the PDEwith respect to a change in the geometry, there is often a strong desire for a very
smooth parameterization of the domain with as few design parameters as possible. Although there have been successful
attempts to incorporate problem structure exploitations in order to efficiently compute these partial derivatives for very
large problems, such as differentiating the entire design chain at once or by considering the adjoint process of the mesh
deformation [4,5], very often one is still forced into finite differencing, which means the PDE residual at steady state has
to be evaluated on meshes that have been perturbed by a variation in each design parameter of the shape, a process that
makes large scale optimization usually prohibitive. This negates some of the advantages of the adjoint approach, such as
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the independence of the number of design parameters. More severely, it also makes fast optimization strategies such as the
one-shot approach [6–8] somewhat unattractive in terms of wall-clock-time.

A more recent trend to overcome the cumbersome computation of these geometric sensitivities is the use of shape
calculus. Shape calculus summarizes the mathematical framework used when considering problems where the shape is the
unknown in the continuous setting.Manipulations in the tangent space of the unknownobject can be used to circumvent any
necessity of knowing discrete geometric sensitivities, because these can be directly included in a surface gradient expression
on the continuous level. More details on this theoretical framework can be found in [9,10]. Traditionally, this methodology
was primarily used to address the very difficult question of existence and uniqueness of optimal shapes [11], but more
recently this methodology has also been used in very large scale aerodynamic design and computational optimization
[12–14]. In [15], for example, the complete optimization of a blended wing–body aircraft in a compressible inviscid fluid is
considered. Because this approach solely relies on the problem formulation in the continuous setting and only afterwards
discretizes the continuous boundary integral expressions for the shape derivative, great care must be taken when making
the initial assumptions and when implementing the respective continuous expressions, especially at singular points in the
geometry, such as the trailing edge of an airfoil [16]. Because this approach is indeed truly independent of the number of
design parameters, it enables the most detailed possible parameterization, that is using all surface mesh nodes as design
unknowns. This is sometimes called ‘‘free node parameterization’’. However, these highly detailed shape parameterizations
usually lack any kind of inherent regularity preservation and as such, one usually finds this approach paired with some
sort of smoothing procedure that projects or embeds the respective optimization iterations into a desired regularity class,
which can nicely be paired with an SQP or Newton-type optimization scheme, which is sometimes also called a ‘‘Sobolev
Method’’ [17,18].

As part of this work, we study how to further increase the accuracy of shape derivatives when used within viscous
compressible aerodynamic design optimization. Within applied aerodynamic shape optimization, it is customary to exploit
the above mentioned function composition approach in order to derive and implement the adjoint equation and gradient
expression. This has been used with great success, both within the context of continuous and discrete adjoint based
aerodynamic shape optimization [19,20,13,21] and general shape optimization [22]. However, common to these approaches
is the assumption that the state equation has a strong form solution and each of the steps within the shape differentiation
process of the function composition exists, which usually means the existence of so-called local shape derivatives. For
elliptic problems, this existence can usually be shown, making the above mentioned approach somewhat of an established
procedure, see for example Chapter 3.3 in [10]. However, for the hyperbolic equations governing some compressible fluids,
the existence of a strong form solution is not clear. Rather, in the presence of shockwaves and discontinuities in the flow, one
can usually only expect the variational form of the equation to hold, a property which is very often not taken into account
when studying the derivative. Shape differentiation of problems governed by PDEs in weak or variational forms are not very
often considered in the literature, except in [23] and especially in [24], where the incompressible Navier–Stokes equations
are considered for this purpose from a rigorous theoretical standpoint. Thus, we revisit the shape optimization problem
previously considered in [25], but the gradient is derived using elements of the variational approach as shown in [24].
Furthermore, we simultaneously follow the function composition approach, outlining the exact differences comparing these
two approaches. One can nicely see how both methodologies reduce to the same gradient expression when assuming the
existence of a strong from solution of the state equation. We conclude with a numerical error analysis based on comparing
finite differencing with either implementation, demonstrating the higher accuracy of the gradient formulation based on the
variational form of the compressible Navier–Stokes equations.

The structure of the paper is as follows. In Section 1,we begin by recapitulating the compressibleNavier–Stokes equations
in both strong and variational form. Next, Section 2 serves as an introduction and quick overview of shape calculus, including
shape derivatives and the Hadamard or Hadamard–Zolésio Structure Theorem, which leads to a preliminary form of the
shape derivative of the aerodynamic cost functions. The next section, Section 3, is used to work out the differences between
the shape derivative of the compressible Navier–Stokes equations stemming from either the function composition or
the variational approach. In Section 4, we then summarize the idea of adjoint calculus. This is used to differentiate the
Navier–Stokes equations, thereby discussing the Hadamard form of the respective objective functions both for the strong as
well as the variational form of the state constraint. Finally, in the last section, numerical results achievedwith bothmethods
are compared to shape derivatives computed by finite differences, showing a considerable gain in accuracy when using
shape derivatives based on the variational form.

1. Fluid mechanics

1.1. Flow domain and boundary conditions

In the following ρ, v = (v1, v2)
⊤, p, E and T denote the density, velocity, pressure, total energy and temperature. The

domain of the fluid is denoted by Ω , with wall and far-field boundaries ΓW and Γ∞. At the wall ΓW , the no-slip boundary
condition v = 0 is imposed for the velocity. With respect to temperature, either the isothermal boundary condition T = TW
or the adiabatic boundary condition ∇T · n = 0 holds. The isothermal and adiabatic parts of the wall are named Γiso and
Γadia and we assume ΓW = Γiso ∪ Γadia disjoint.
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