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a b s t r a c t

Statistical inference for dynamic generalized linear models (DGLMs) is challenging due
to the time varying nature of the unknown parameters in these models. In this paper,
we focus on the covariance matrix and the transfer function, the two key components in
DGLMs. We first establish some convergence results for the covariance matrix estimation.
We then provide an in-depth study of the transfer function on its stability and Fourier
transformation, which is necessary for parameter estimation in DGLMs. Implications of our
results on estimation in DGLMs are illustrated in the paper through a simulation study and
a real data example. Our understanding on DGLMs has substantially improved though this
study.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

West et al. [1] developed an extension of dynamicmodels by allowing the response observations to be non-Gaussian and
to follow a probability distribution in the exponential family. This extension results in the so-called dynamic generalized
linear models (DGLMs). Details about DGLMs can be found in e.g. [2–9]. DGLMs have brought ample opportunities, along
withmany challenges for statistical inference as well, for performing advanced statistical regression analysis for time-series
data that contain regressors having time-varying effects. It is our objective in this paper that we undertake to understand
some of these opportunities and challenges and to establish new results for DGLMs in regard to their covariance matrices
and transfer functions.

A DGLM connecting a response time series YT = (y1, . . . , yT )with a regressor time seriesXT = (X1, . . . , XT ) and another
n × 1 deterministic regressor vector time series FT = (F1, . . . , FT ) can be formulated as follows:

yt ∼ f (yt , ηt) ∝ exp{ytηt − b(ηt)}, (observation equation) (1)

g(µt) = ηt = υ(δ)Xt + F′

tαt , υ(δ)Xt ∼ N1(0, V ), t = 1, . . . , T , (2)
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αt = Gαt−1 + ξt , ξt ∼ Nn(0,Wt), (transition equation) (3)

υ(δ) =
β(δ)

ρ(δ)
, (transfer function). (4)

Here f (yt , ηt) is the probability density function (pdf) of Yt given ηt that is assumed to belong to an exponential family with
natural parameter ηt and scale parameter equal 1 for ease of presentation. The conditional mean µt = E(yt |ηt) = ḃ(ηt) =

db(ηt)/dηt can be derived from f (yt , ηt), and is linked with the mean predictor by the link function g(·). In the current
setting the natural parameter ηt is treated as the mean predictor which equals υ(δ)Xt + F′

tαt . Hence g(·) = ḃ−1(·) meaning
g(·) is the canonical link. Effects of the evolution of Ft onµt are specified by the time-varying n×1 random vector parameter
αt that has an autoregressive structure given by the transition equation, in which G is an n × n matrix and ξt follows an n-
dimensional multivariate normal distribution Nn(0,Wt) with mean vector of zero and covariance matrix ofWt . We assume
ξ1, . . . , ξT are mutually independent of each other. We also assume y1, . . . , yT are conditionally independent of each other
given α1, . . . ,αT andXT . Finally, υ(δ) ≡ υ0 +υ1δ+υ2δ

2
+· · · is the transfer function on the lag operator δ (i.e. δXt = Xt−1),

and measures the cumulative effect of the time series {Xt} on the mean predictor ηt . Note the coefficients υ0, υ1, υ2, . . . are
referred to as the impulse responses and express the instantaneous effect of Xt on ηt at present and future times. The transfer
function υ(δ) in DGLM is specified as the ratio of two polynomials on δ: β(δ) = β0 + β1δ + · · · + βm−1δ

m−1
+ βmδm and

ρ(δ) = ρ0 + ρ1δ + · · · + ρr−1δ
r−1

+ ρrδ
r . The roots of ρ(δ) = 0 are called the poles of υ(δ); the roots of β(δ) = 0 are

called the zeros of υ(δ). Stability of the transfer function υ(δ) is determined by whether these poles and zeros are outside
the unit circle.

DGLMs as described above generalize both the dynamical regression models and generalized linear models (GLMs) from
different perspectives, making them flexible and popular in applications. Although they can be further generalized by,
e.g. including additional covariates with non-time-varying effects in the mean predictor equation (2) and extending Xt to
be vector-valued, we will use DGLMs as in their current form for ease of presentation. Our primary focuses in this paper are
then on deriving useful features of the covariancematrix and the transfer function in DGLM for assisting statistical inference.

The rest of the paper is organized as follows. In Section 2, we investigate the convergence properties of the covariance
matrix in DGLM in general and also, as an illustration, in a special situation where the DGLM is canonical. In Section 3,
we introduce some measures for approximating the transfer function in the DGLMs. The approximation performance is
then studied based on using Fourier transformation. In Section 4 we provide a simulation study and a real data example to
complement the results in Sections 2 and 3. Finally we provide some conclusion remarks in Section 5.

2. Convergence of covariance matrix estimation

2.1. Covariance matrix

Conditional covariance matrix Ct = var(αt |Yt)(Yt = (y1, . . . , yt)) is a key component in DGLM and its efficient
estimation plays a pivotal role there. When using a Bayesian approach, the posterior distributions involved in the definition
of Ct may be multi-modal sometimes. In such situations enhanced MCMC methods such as parallel tempering (PT) and
Population MCMC (Pop-MCMC) are often used to accelerate generating these difficult posterior distributions, see e.g. [7,10]
for details.

For DGLM presented in Section 1, the posterior distribution of α1, . . . ,αT is

πT (α1, . . . ,αT |YT ) ∝

T
t=1

f (yt |α1, . . . ,αt)fα0(α0|C0)fα1,...,αt (α1, . . . ,αt |C1, . . . , Ct)fCt (Ct).

Denote the temperature sequence used in MCMC as {Ti}Ti=1 satisfying T1 = 1 < T2 < · · · < Ti < · · · < TT−1 < TT . Then

PT is a parallel MCMC with T chains, each having a different stationary distribution πi(·) ∝ πT (·)
1
Ti defined on B(X), i =

1, 2, . . . , T , where B(X) is a σ -algebra of the state space X of (α1, . . . ,αT ). Then PT is such a method that swaps the tth
values in every pair of chains i and j according to the acceptance probability:

Mq(α
(i)
t , α

(j)
t ) = min


1,

πi(α
(j)
t )πj(α

(i)
t )

πj(α
(j)
t )πi(α

(i)
t )

·
q(α∗

t |α
∗∗
t )

q(α∗∗
t |α∗

t )


,

where α∗
t = (α

(1)
t , . . . , α

(i)
t , . . . , α

(j)
t , . . . , α

(N)
t ) and α∗∗

t = (α
(1)
t , . . . , α

(j)
t , . . . , α

(i)
t , . . . , α

(N)
t ) and q(·|·) is the proposal

density.
Pop-MCMCmay be used to simulate the posterior distributionπT (α1, . . . ,αT |YT ) in the form of T Markov chains. Usually

the joint stationary distribution for these T chains is of the form

π(α) =

T
i=1

πi(αi).
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