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a b s t r a c t

In this paper, we construct new nonconforming finite elements on the meshes consisting
of arbitrary convex quadrilaterals, especially for the quadratic and cubic cases. For each
case, we first define a quadrilateral element that adopts edge moments as the degrees
of freedom (DoFs), and then enforce a linear constraint on this element. We have, for the
quadratic case, eight degrees of freedom per element and, for the cubic case, eleven DoFs
per element, respectively. The dimensions and the bases of different types for the global
finite element spaces are provided. We consider the approximations of two-dimensional
second order elliptic problems for both of these elements. Error estimates with optimal
convergence order in both broken H1 norm and L2 norm are given. Moreover, we consider
the discretization of the Stokes equations adopting our quadratic element to approximate
each component of the velocity, along with piecewise discontinuous P1 element for the
pressure. This mixed scheme is stable and optimal error estimates both for the velocity
and the pressure are also achieved. Numerical examples verify our theoretical analysis.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In the past few years, nonconforming finite elements have gained more and more attractions because of their ability to
provide stable solutions of many practical problems in fluid flow and solid mechanics. As an example, for triangular meshes,
the simplest nonconforming P1 element due to Crouzeix and Raviart, employing the degrees of freedom (DoFs) associated
with the values at themidpoint of each edge or integral values on each edge,was devised to solve Stokes equations in a stable
manner and elasticity problemswithout numerical locking [1,2]. The key idea, that the integral of the jump of adjacent shape
functions along each interface vanishes, is used to pass the patch test [3]. There are also several higher order nonconforming
simplicial finite elements listed in literature, see [1,4–7].

Compared with simplicial meshes, quadrilateral meshes usually require less DoFs in practical applications. Many soft-
wares for solving fluid mechanics are available over quadrilateral meshes. Several quadrilateral nonconforming finite ele-
ments of first order have been proposed such as the Han element [8], the nonconforming rotated Q1 (NR) element [9], the
DSSY element [10,11] and the enriched NR element [12]. All these elements are of at least four DoFs. It is interesting to see
that there exist three-DoF quadrilateral finite elements. For instance, Park and Sheen designed the nonconforming quadri-
lateral P1 element in [13], whose DoFs are, as selected in the triangular Crouzeix–Raviart element, midpoint values of the
edges of a quadrilateral. Note that the Park–Sheen element utilizes a linear relationship associated with these DoFs for a
linear function over a quadrilateral.
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For a higher order quadrilateral nonconforming finite element, the patch test implies that a Pr element needs to satisfy
that on each interface the jump of adjacent polynomials be orthogonal to Pr−1 polynomial on the interface. This hints a
simple way to pass the patch test: (i) select the DoFs as values at the r Gauss points on each edge, and then (ii) seek a
shape function space containing Pr , such that the restrictions of the shape functions on each edge are polynomials of degree
no more than r . Motivated by this consideration, Lee and Sheen constructed an eight-DoF quadratic nonconforming finite
element on rectangles [14]. This element is considered as a rectangular version of the triangular Fortin–Soulie element
[5,15]. Recently, this idea was extended to the cases r = 3 by Meng, Luo and Sheen in [16] and r > 3 by Hu and Zhang
in [17]. It should be also stressed that the DoFs are not all linearly independent if the shape functions satisfy the condition
(ii) as in the case for the Park–Sheen element.

However, it seems quite difficult to design a higher order nonconforming finite element over an arbitrary convex
quadrilateral, rather than a rectangle or a parallelogram, adopting the strategy (i)–(ii) if the shape function space completely
contains Pr with least DoFs. For the quadratic case, Kim et al. employed spline functions on each quadrilateral to design the
piecewise P2-nonconforming finite element in [18]. As a consequence, its numerical implementation is a little complicated
due to the triangulation procedure on each element.Moreover, to the best of our knowledge, there is no such nonconforming
finite element of order no less than three that is defined over an arbitrary quadrilateral satisfying the conditions (i) and (ii).

An alternative way to pass the patch test is to employ the edge moments as the DoFs for higher order nonconforming
finite elements. A celebrated example is the class of nodal type nonconforming rectangular finite elements of higher order
due to Hennart et al. designed in 1988 [19]. Matthies extended these elements for Stokes equations in [20] and pointed
out that they are higher order extensions of the NR element. Shortly thereafter, Matthies’s elements were modified to be
more robust for arbitrary convex quadrilateral meshes [21]. In 2005, Hu and Shi introduced the constrained nonconforming
rotated Q1 (CNR) element in [22] by enforcing a linear constraint involving the edge integrals on the NR element, which
interprets the Park–Sheen element from a second perspective.

It is a hot topic to design robust finite elements insensitive to mesh distortion in the field of mathematics [23–26,18,
21,27,9]. Also, numerous techniques have been developed to deal with this issue in the area of engineering. Long and his
co-workers introduced the quadrilateral area coordinate method in [28,29]. This method enjoys the advantage that the
transformation between the area coordinates and the Cartesian coordinates is always linear, which makes the elements
insensitive to mesh distortion. This method was applied to construct robust 4- and 8-node membrane elements [30,31] and
a 4-node plate-bending element [32]. The hybrid stressmethod proposed by Pian et al. [33,34] and the analytic trial function
method proposed by Fu et al. [35] are effective techniques as well, which were improved by Cen et al. to develop the 8-
and 12-node quadrilateral elements immune to severely distorted meshes even containing concave shapes [36]. Rajendran
et al. constructed robust quadrilateral elements by using asymmetric interpolations for the virtual and real displacements in
integration of the element stiffnessmatrix [37,38]. Other successful contributions to this topic include the quasi-conforming
method [39], the generalized conforming method [40], the bivariate spline method [41,42] and so on.

In this paper,we construct newhigher order nonconforming finite elements on arbitrary convex quadrilaterals, especially
for the quadratic and cubic cases. For each case, we select a finite element with the DoFs including the edge moments
over a quadrilateral, and then add a linear constraint associated with these moments to accomplish the DoF reduction.
The numbers of the DoFs are essentially eight and eleven for quadratic and cubic cases, respectively, due to these linear
constraints. The dimensions of the global finite element spaces are counted, and different types of basis functions are
provided. On rectangular meshes, our newly proposed quadratic element is precisely the Lee–Sheen element, and our cubic
one degenerates to the Meng–Luo–Sheen element [16], provided that some specific shape function spaces are selected. We
consider the approximations of second order elliptic problems by using both of these elements. Error estimateswith optimal
convergence order in both broken H1 norm and L2 norm are given. Moreover, we consider the discretization of the Stokes
equations using our quadratic element. We adopt this element to approximate each component of the velocity, along with
piecewise discontinuous P1 element for the pressure. This mixed scheme is stable and optimal error estimates both for the
velocity and the pressure are also achieved.

The rest of this paper is organized as follows. In Section 2, our new quadratic nonconforming finite element is defined on
quadrilateral meshes. The structures of the global finite element spaces are introduced. Section 3 shows our new element of
cubic case. Thenwe apply our elements to the elliptic problems and stationary Stokes equations with optimal error estimate
in Section 4. Numerical examples are given in Section 5 to verify our theoretical analysis. Finallywe end this paperwith some
additional remarks in Section 6.

2. A new eight-DoF nonconforming quadratic finite element on quadrilaterals

The main strategy to design our new quadratic nonconforming finite element is to construct a nine-DoF finite element
(K , P ∗

2,K , N ∗

2,K ) on the quadrilateral K , and then add a linear constraint involving the DoFs of (K , P ∗

2,K , N ∗

2,K ) to determine
our target element (K , P2,K , N2,K ).

2.1. A nine-DoF nonconforming quadratic finite element

As in Fig. 2.1, let K be an arbitrary convex quadrilateral. The four vertices of K are given by V1, V2, V3, V4 in a
counterclockwise order, and the four edges are denoted as E1 = V1V2, E2 = V2V3, E3 = V3V4 and E4 = V4V1, with the
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