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a b s t r a c t

A reliable and efficient a posteriori error estimator is derived for a class of discontinuous
Galerkin (DG) methods for the Signorini problem. A common property shared by many DG
methods leads to a unified error analysis with the help of a constraint preserving enrich-
ing map. The error estimator of DG methods is comparable with the error estimator of the
conforming methods. Numerical experiments illustrate the performance of the error esti-
mator.
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1. Introduction

Adaptive finite elementmethods based on reliable and efficient a posteriori error estimators are playing an important role
in the numerical methods for solving partial differential problems. The monographs [1,2] present an introductory as well as
comprehensive study of the subject. In this article, we study the derivation of a reliable and efficient a posteriori error esti-
mator for a class of discontinuous Galerkin (DG) methods for the Signorini problem. The Signorini problem is a variational
inequality of the first kind that arises from the study of frictionless contact problems [3]. Recently in [4], several DGmethods
have been proposed and their a priori error analysis has been derived for the Signorini problem. Independently in [5], a local
discontinuous Galerkin (LDG)method has been proposed and analyzed for a simplified Signorini problem. There are handful
works on the analysis of finite elementmethods for variational inequalities of the first kind. Thework related to the obstacle
problem can be found in [3,6–11] and in [12–17]. Related to the work on the Signorini problem, we refer to [3,18–21] for a
priori error analysis and to [22–25] for a posteriori analysis. The analysis in [24,25] is for a mixed formulation of the Signorini
problem introducing a Lagrange multiplier and the analysis in [22,23] is for a simplified Signorini problem. Also refer to the
recent work in [26] for the a posteriori error control of conforming methods. In this article, we derive a residual based a
posteriori error estimator for a class of DG methods for the Signorini problem. In the subsequent analysis of DG methods, a
constraint preserving enriching map connecting DG functions with conforming finite element functions plays an important
role. Also a common property shared by many DG methods is helpful in deriving the analysis in a unified framework. The
difficulties in the analysis stem from the variational inequality and the nonconformity of the finite element space. We treat
them by introducing a Lagrange multiplier and a nonlinear enriching function.
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The rest of the article is organized as follows. In Section 2, we introduce the Signorini problem and derive some useful
properties pertaining to the solution and a Lagrange multiplier corresponding to constraints on the contact region. In
Section 3, we introduce the notation and recall some preliminary results. Therein, we construct an enrichingmap preserving
constraints on the discrete functions. We introduce the discrete problem in Section 4 and derive a posteriori estimates in
Section 5. In Section 6, we discuss some applications of the analysis to DGmethods. In Section 7, we present some numerical
experiments to illustrate the theoretical results. Finally, we present some conclusions in Section 8.

2. Model problem

LetΩ ⊂ R2 be a bounded polygonal domainwith boundary ∂Ω = Γ . We assume that the boundaryΓ is partitioned into
three partsΓD, ΓN andΓC which are open andmutually disjoint setswithmeas(ΓD) > 0. Further, assume that Γ̄C ⊂ ∂Ω\Γ̄D
(see [19, p. 112]) and the unit outward normal vector ν to ΓC is constant [25].

The linearized strain tensor ε and stress tensor σ are defined, respectively, by

ε(u) =
1
2


∇u + (∇u)T


, (2.1)

σ(u) = λ (trε(u))I + 2µ ε(u), (2.2)

where u : Ω → R2 is the displacement vector, λ > 0 and µ > 0 are the Lame’s coefficients and I denotes 2 × 2 identity
matrix. Define the space V by

V = [H1
D(Ω)]2 := {v ∈ [H1(Ω)]2 : v = 0 on ΓD}, (2.3)

where H1(Ω) is the standard Sobolev space equipped with the norm

∥v∥1,Ω =

 
0≤|α|≤1

∥∂αv∥
2
L2(Ω)

1/2

.

Here α = (α1, α2) is a multi-index with αi’s (i = 1, 2) are nonnegative integers and |α| = α1 +α2. For simplicity, the L2(Ω)
norm will be denoted by ∥ · ∥.

For a vector valued function v, define its normal and tangential components on the boundary by vn = v · n and vt =

v − vnn, respectively, where n is the unit outward normal vector and t is the tangential vector to ∂Ω . In a similar way, for
any matrix valued function q, its normal and tangential components are defined by qn = (qn) · n and qt = qn − qnn,
respectively.

A nonempty, closed and convex subset K of V is defined by

K := {v ∈ V : vn ≤ 0 a.e. on ΓC }. (2.4)

Given f ∈ [L2(Ω)]2 and g ∈ [L2(ΓN)]2, the variational formulation for the Signorini problem is to find u ∈ K such that

a(u, v − u) ≥ l(v − u) ∀ v ∈ K, (2.5)

where the bilinear form a(·, ·) and the linear functional l are defined by

a(w, v) =


Ω

σ(w) : ε(v) dx ∀ v,w ∈ V, (2.6)

l(v) =


Ω

f · v dx +


ΓN

g · v ds ∀ v ∈ V, (2.7)

and for any A = (aij) ∈ R2×2, B = (bij) ∈ R2×2, ‘‘:’’ is defined as

A : B =


i,j

aijbij.

It is easy to check that the bilinear form a(·, ·) isV-elliptic and continuous. From the theory of elliptic variational inequalities
[3,18,27], it is well known that the problem (2.5) admits a unique solution.

In the subsequent analysis, we will be dealing with the traces of Sobolev functions. We recall the following results from
the trace theory (see [19,28]):

The assumptions on ΓC imply that [19, p. 88] the trace operator γc : V → [H1/2(ΓC )]
2 maps V continuously onto

[H1/2(ΓC )]
2, where the space [H1/2(ΓC )]

2 is equipped with the norm

∥w∥1/2,ΓC =


∥w∥

2
L2(ΓC ) +


ΓC


ΓC

|w(x) − w(y)|2

|x − y|2
dx dy

1/2

. (2.8)



Download English Version:

https://daneshyari.com/en/article/4638228

Download Persian Version:

https://daneshyari.com/article/4638228

Daneshyari.com

https://daneshyari.com/en/article/4638228
https://daneshyari.com/article/4638228
https://daneshyari.com

