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a b s t r a c t

Microwave scattering by obstacles made of ferrite materials has been studied for a long
time because of its important applications in radar, satellite, optical imaging system, signal
processing, atmospheric science, and even cloaking device design. In this paper, we present
for the first time the rigorous mathematical analysis of a magnetized ferrite model widely
used by engineers. The well-posedness of the model is established first. Then we develop
a finite element time-domain method for solving this model. Numerical stability similar to
the continuous stability is proved for our scheme, and the optimal error estimate in the L2
norm is obtained. Numerical results are consistent with our theoretical analysis and show
how wave propagates in the ferrite material.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Ferrite materials are very popular in microwave applications due to their many interesting characteristics such as fre-
quency tunability, polarization diversity, and signal control (cf. [1]). In microstrip patch antenna design, ferrite substrates
are often used instead of the normal dielectric material, since they can reduce the radar cross section of the antennas, and
change the beamwidth and direction in ferrite-based antenna arrays. Due to the inherent anisotropy and nonlinearity of the
ferritematerials, finding analytical solutions for ferrite based problems is often impossible, and development of accurate and
efficient numerical methods plays a very important role. However, most publications on simulation of wave propagation in
ferrites (e.g., [1–4]) are based on the finite difference time-domain (FDTD)methods due to its simplicity. It iswell-known that
the FDTDmethods suffer when the underlying problem has a complicated geometry. In overcoming this disadvantage, there
are some developments of finite elementmethod (FEMs) for solving the ferrite model in engineering community. For exam-
ple, Brown et al. [5] developed a finite element frequency-domain method to solve the time-harmonic Maxwell’s equations
for simulating patch antennas on ferromagnetic substrates. Zhou and Davis [6] used FEMs with edge elements for modeling
waveguides loadedwithmagnetized ferrite. However,most publications of FEMs on ferrites are based on frequency-domain.

In this paper, based on our previous works on developing finite element time-domain (FETD) methods for solving wave
propagation in metamaterials (e.g., [7–10]), we investigate the popular magnetized ferrite model in time-domain from the
mathematical point of view. Of course, there exist many excellent results on the existence, uniqueness and FEMs for solving
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Maxwell’s equations in other media (e.g., [11–27] and references therein). The mathematical analysis and development of
our FETD method for solving the ferrite model is original.

The paper is organized as follows. In Section 2, we first present the governing equations for the popular magnetized fer-
ritemodel used bymany engineers [1,4]. Thenwe establish a continuous stability for themodel, and prove the existence and
uniqueness of the solution to the modeling equations. In Section 3, we develop a FETDmethod for solving the ferrite model.
Numerical stability similar to the continuous case is obtained first. Following the similar technique, the optimal error esti-
mate in the L2 norm is proved. In Section 4, numerical results with an exact solution case and a practical wave propagation
problem in ferrite are presented. We conclude the paper in Section 5.

2. The modeling equations

To simulate the response of a microstrip patch antenna printed on a magnetized ferrite substrate, the Polder frequency
dependent permeability tensor is often adopted (cf. [1,4]):

µ(ω) =


µxx µxy 0

−µxy µyy 0
0 0 µ0


(2.1)

where it is assumed that the magnetizing Direct Current (DC) field is in the z-direction. The components in (2.1) are

µxx = µyy = µ0


1 +

ωm(ω0 + jωα)
(ω0 + jωα)2 − ω2


= µ0 +

µ0ωmω0 + (jω)αµ0ωm

ω2
0 + (jω)2αω0 + (jω)2(1 + α2)

(2.2)

and

µxy =
jωµ0ωm

(ω0 + jωα)2 − ω2
=

(jω)µ0ωm

ω2
0 + (jω)2αω0 + (jω)2(1 + α2)

(2.3)

where j =
√

−1, µ0 is the free space permeability,ωm is themagnetization frequency,ω0 is the resonance frequency, α ≥ 0
is the damping/loss factor, and ω is the general wave frequency. A lossless case (i.e., α = 0) was considered in [5].

Using the constitutive equation

Bx
By
Bz


= µ


Hx
Hy
Hz


and the exp(jωt) time variance,we can obtain the time-domain governing

equations (cf. [1])

ϵ0
∂E
∂t

= ∇ × H, (2.4)

∂B
∂t

= −∇ × E, (2.5)

µ0(1 + α2)
∂2

∂t2


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Hy


+ µ0α(2ω0 + ωm)

∂

∂t


Hx
Hy


+ µ0ω0(ω0 + ωm)


Hx
Hy


+


0 µ0ωm

−µ0ωm 0


∂

∂t


Hx
Hy


= (1 + α2)

∂2

∂t2


Bx
By


+ 2αω0

∂

∂t


Bx
By


+ ω2

0


Bx
By


, (2.6)

Bz = µ0Hz . (2.7)
To simplify the notation, from now on we replace µ0H by a new variable, which is still denoted as H without confusion.

Moreover, we will denote time derivatives ∂u
∂t and ∂2u

∂t2
as ut and utt , respectively. To facilitate the analysis of the complex

system (2.4)–(2.7), we combine the constitutive equation (2.6)–(2.7) into one vector equation, and arrange the system (2.4)–
(2.7) in a different order as follows:

Bt = −∇ × E, (2.8)

(1 + α2)Htt + MaHt + ω0(ω0 + ωm)H = (1 + α2)Btt + MbBt + McB, (2.9)
ϵ0µ0Et = ∇ × H, (2.10)

where the matrices Ma,Mb and Mc are

Ma = α(2ω0 + ωm)I3 +

 0 ωm 0
−ωm 0 0
0 0 0


, (2.11)

Mb =

2αω0 0 0
0 2αω0 0
0 0 α(2ω0 + ωm)


, Mc =

ω2
0 0 0
0 ω2

0 0
0 0 ω0(ω0 + ωm)

 . (2.12)
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