A finite element method for singular solutions of the Navier-Stokes equations on a non-convex polygon

Hyung Jun Choi ${ }^{*, 1}$, Jae Ryong Kweon
Department of Mathematics, Pohang University of Science and Technology, Pohang 790-784, Gyeongbuk, Republic of Korea

ARTICLE INFO

Article history:

Received 20 May 2014
Received in revised form 31 March 2015

MSC:

65N12
65N30

Keywords:

Stokes' corner singularity
Finite element method
Error estimate

Abstract

It is shown in Choi and Kweon (2013) that a solution of the Navier-Stokes equations with no-slip boundary condition on a non-convex polygon can be written as $[\mathbf{u}, p]=$ $\mathcal{C}_{1}\left[\Phi_{1}, \phi_{1}\right]+\mathcal{C}_{2}\left[\Phi_{2}, \phi_{2}\right]+\left[\mathbf{u}_{\mathrm{R}}, p_{\mathrm{R}}\right]$ near each non-convex vertex, where $\left[\mathbf{u}_{\mathrm{R}}, p_{\mathrm{R}}\right] \in \mathbf{H}^{2} \times \mathrm{H}^{1}$, [Φ_{i}, ϕ_{i}] are corner singularity functions for the Stokes problem with no-slip condition, and $\mathcal{C}_{i} \in \mathbb{R}$ are coefficients which are called the stress intensity factors. We design a finite element method to approximate the coefficients \mathcal{C}_{i} and the regular part $\left[\mathbf{u}_{\mathrm{R}}, p_{\mathrm{R}}\right]$, show the unique existence of the approximations, and derive their error estimates. Some numerical examples are given, confirming convergence rates for the approximations.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Our concern is with a stable finite element scheme handling the singular behavior at the corner of solutions for the stationary Navier-Stokes equations on a (non-convex) polygon. For this we employ a known decomposition (see [1]) of the solution into a singular part plus a regular part near the non-convex vertex. The singular part consists of the multiplication of the coefficients and the leading corner singularities for the Stokes operator with no-slip boundary condition on the infinite sector. It is seen from [1] that each coefficient of the corner singularities is regarded as a continuous linear functional on the space $\mathbf{H}^{s-2} \times \mathrm{H}^{s-1}$ for $s \tilde{\gamma} \lambda_{i}+1$, called the stress intensity factor, and the regular part is known to have the $\mathbf{H}^{2} \times \mathrm{H}^{1}$-regularity provided that the given force has the \mathbf{L}^{2}-regularity, where $\lambda_{i} \in(1 / 2,1)$ denotes the singular exponent. In this paper we propose a finite element scheme for the stress intensity factors and the regular part.

Let Ω be a non-convex polygon in the plane \mathbb{R}^{2} with the boundary $\Gamma=\partial \Omega$. The stationary Navier-Stokes equations to be considered in this paper are

$$
\begin{align*}
& -\mu \Delta \mathbf{u}+(\mathbf{u} \cdot \nabla) \mathbf{u}+\nabla p=\mathbf{f} \text { in } \Omega, \\
& \operatorname{div} \mathbf{u}=g \text { in } \Omega \tag{1.1}\\
& \mathbf{u}=0 \text { on } \Gamma
\end{align*}
$$

where \mathbf{u} is the velocity vector, p is the pressure; μ is a viscous number with $\mu \tilde{\gamma} 0 ; \mathbf{f}$ and g are given functions with $\int_{\Omega} g d \mathbf{d}=0$. Usually the right hand side g is set to be zero for incompressibility but the non-vanishing $g \neq 0$ is for specifying the regularity of g in the coefficients of the corner singularities (see (2.1)). In this paper we assume that the boundary Γ

[^0]

Fig. 1. The singular exponents λ_{i}.
has only one non-convex vertex P, for simplicity. Denote by $\omega:=\omega_{2}-\omega_{1} \tilde{\gamma} \pi$ an opening angle at P, where ω_{i} are numbers satisfying $\omega_{1}<\omega_{2}<\omega_{1}+2 \pi$.

Throughout this paper we will use the corner singularity functions for the Stokes operator $\mathbf{L}[\mathbf{v}, q]=[-\mu \Delta \mathbf{v}+\nabla q,-\operatorname{divv}]$ with no-slip boundary condition (see [2, Section 5.1]). The leading singular eigenvalues λ_{i}, which are the roots of the trigonometric equation: $\sin ^{2}(\lambda \omega)-\lambda^{2} \sin ^{2} \omega=0$, are real and ordered by

Case 1: $1 / 2<\lambda_{1}<\pi / \omega<\lambda_{2}=1<\lambda_{3}<2 \pi / \omega, \quad \omega \in\left(\pi, \omega_{*}\right]$,
Case 2: $1 / 2<\lambda_{1}<\pi / \omega<\lambda_{2}<\lambda_{3}=1<2 \pi / \omega, \quad \omega \in\left(\omega_{*}, 2 \pi\right)$,
where $\omega_{*} \approx 1.4303 \pi$ is the solution of the equation: $\tan \omega=\omega$ in the interval $(0,2 \pi]$. Throughout this paper we shall consider Case 2 for a generalization. Letting the non-convex vertex be placed at the origin, the corner singularities for velocity and pressure are given by

$$
\begin{equation*}
\Phi_{i}=\mu^{-1} \chi r^{\lambda_{i}} \mathcal{T}_{i}(\theta), \quad \phi_{i}=\chi r^{\lambda_{i}-1} \xi_{i}(\theta) \tag{1.3}
\end{equation*}
$$

where $\mathcal{T}_{i}(\theta)$ and $\xi_{i}(\theta)$ are certain smooth trigonometric eigenfunctions for velocity and pressure, corresponding to the eigenvalue λ_{i}, and χ is a smooth cutoff function which has a support near the origin. Obviously the function \mathcal{T}_{i} satisfies $\mathcal{T}_{i}\left(\omega_{1}\right)=$ $\tau_{i}\left(\omega_{2}\right)=0$. In particular, for $\lambda_{i}=1$, the singularities are $\Phi_{i}=0$ and $\phi_{i}=4 \chi$, which are smooth functions. See Fig. 1.

In what follows, for an open set $D \subset \mathbb{R}^{2}, \mathrm{~W}^{s, q}(D)$ denotes the usual fractional Sobolev space with norm $\|v\|_{s, q, D}$ and $\mathrm{L}^{\infty}(D)$ the measurable space with norm $|v|_{\infty, D}:=\operatorname{ess} \sup \{|v(\mathbf{x})|: \mathbf{x} \in D\}$ (see [3]). If $q=2$, denote by $\mathrm{H}^{s}(D)=\mathrm{W}^{s, 2}(D)$ and $\|v\|_{s, D}=\|v\|_{s, 2, D}$. Also we define $\mathrm{H}_{0}^{1}(D)=\left\{v \in \mathrm{H}^{1}(D):\left.v\right|_{\partial D}=0\right\}, \mathrm{L}_{0}^{2}(D)=\left\{v \in \mathrm{~L}^{2}(D): \int_{D} v \mathrm{~d} \mathbf{x}=0\right\}, \mathrm{H}_{0}^{s}(D)=$ $\mathrm{H}^{s}(D) \cap \mathrm{H}_{0}^{1}(D)$ for $s \geq 1$, and $\overline{\mathrm{H}}^{s}(D)=\mathrm{H}^{s}(D) \cap \mathrm{L}_{0}^{2}(D)$ for $s \geq 0$. Let $\mathrm{H}^{-s}(D)$ be the dual space of $\mathrm{H}_{0}^{s}(D)$ with $\|f\|_{-s, D}:=$ $\sup \left\{\langle f, v\rangle /\|v\|_{s, D}: 0 \neq v \in \mathrm{H}_{0}^{s}(D)\right\}$, where \langle,$\rangle means the duality pairing. Similarly \overline{\mathrm{H}}^{-s}(D)$ denotes the dual space of $\overline{\mathrm{H}}^{s}(D)$ and H^{\prime} also means the dual space of H . Furthermore denote by $\mathbf{H}^{s}(D)=\mathrm{H}^{s}(D) \times \mathrm{H}^{s}(D)$ and similar for other spaces. If $D=\Omega$, we will omit the domain Ω in spaces and norms such as $\mathrm{H}^{s}=\mathrm{H}^{s}(\Omega)$ and $\|v\|_{s}=\|v\|_{s, \Omega}$. Throughout this paper let $C \tilde{\gamma} 0$ be a generic constant only depending on the domain Ω. Define the number $s_{i}=\lambda_{i}+1$, which is used in classifying the regularity order space of the solution depending on the corner singularity.

We state a basic corner singularity result for the Navier-Stokes equations (1.1).
Theorem 1.1 (Theorem 1.2 in [1]). Suppose that $\mathbf{f} \in \mathbf{H}^{-1}$ and $g \in \mathrm{~L}_{0}^{2}$. Let

$$
\mathcal{N}=\sup _{\mathbf{u}, \mathbf{,}, \mathbf{w} \in \tilde{\mathbf{V}}} \frac{\int_{\Omega}[(\mathbf{w} \cdot \nabla) \mathbf{u}] \cdot \mathbf{v} d \mathbf{x}}{\|\nabla \mathbf{u}\|_{0}\|\nabla \mathbf{v}\|_{0}\|\nabla \mathbf{w}\|_{0}}
$$

where $\tilde{\mathbf{V}}=\left\{\mathbf{v} \in \mathbf{H}_{0}^{1}: \operatorname{div} \mathbf{v}=0\right\}$. If $\mu \tilde{\gamma}\left[C_{1} \mathcal{N}\left(\|\mathbf{f}\|_{-1}+\mu\|g\|_{0}\right)\right]^{1 / 2}+C_{1}\|g\|_{0}$ for some given constant $C_{1} \tilde{\gamma} 0$, there is a unique solution $[\mathbf{u}, p] \in \mathbf{H}_{0}^{1} \times \mathrm{L}_{0}^{2}$ of the problem (1.1), with $\mu\|\mathbf{u}\|_{1}+\|p\|_{0} \leq C_{a}\left(\|\mathbf{f}\|_{-1}+\mu\|g\|_{0}\right)$ for some constant C_{a}.

Furthermore, for a number s satisfying $\pi / \omega+1<s_{2}<s \leq 2$ we assume that $\mathbf{f} \in \mathbf{H}^{s-2}$ and $g \in \overline{\mathrm{H}}^{s-1}$. If $\mu \tilde{\gamma} C_{b}\left(\|\mathbf{f}\|_{s-2}+\right.$ $\left.\mu\|g\|_{s-1}\right)^{1 / 2}$ for some given constant $C_{b} \tilde{\gamma} 0$, there are some coefficients \mathcal{C}_{i} and a regular part $\left[\mathbf{u}_{\mathrm{R}}, p_{\mathrm{R}}\right] \in \mathbf{H}_{0}^{S} \times \mathrm{H}^{s-1}$ such that the solution $[\mathbf{u}, p]$ can be split by

$$
\begin{equation*}
\mathbf{u}=\sum_{i=1}^{2} \mathcal{C}_{i} \Phi_{i}+\mathbf{u}_{\mathrm{R}}, \quad p=\sum_{i=1}^{2} \mathcal{C}_{i} \phi_{i}+p_{\mathrm{R}} \tag{1.4}
\end{equation*}
$$

and the remainder $\left[\mathbf{u}_{\mathrm{R}}, p_{\mathrm{R}}\right]$ and the coefficients \mathcal{C}_{i} satisfy the regularity estimate:

$$
\begin{equation*}
\mu\left\|\mathbf{u}_{\mathrm{R}}\right\|_{s}+\left\|p_{\mathrm{R}}\right\|_{s-1}+\sum_{i=1}^{2}\left|\mathcal{C}_{i}\right| \leq C_{b}\left(\|\mathbf{f}\|_{s-2}+\mu\|g\|_{s-1}\right) \tag{1.5}
\end{equation*}
$$

https://daneshyari.com/en/article/4638234

Download Persian Version:
https://daneshyari.com/article/4638234

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: choihjs@gmail.com (H.J. Choi), kweon@postech.ac.kr (J.R. Kweon).
 ${ }^{1}$ Current address: Research Center, Samsung SDS, Seoul 138-240, Republic of Korea.

