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a b s t r a c t

In this paper, we consider the numerical approximation of a reaction–diffusion system 2D
in space whose solutions are patterns oscillating in time or both in time and space. We
present a stability analysis for a linear test heat equation in terms of the diffusion d and of
the reaction timescales given by the real and imaginary parts α and β of the eigenvalues of
J(Pe), the Jacobian of the reaction part at the equilibrium point Pe. Focusing on the case α =

0, β ≠ 0, we obtain stability regions in the plane (ξ , ν), where ξ = λ(h; d)ht , ν = βht , ht
time stepsize, λ lumped diffusion scale depending also from the space stepsize h and from
the spectral properties of the discrete Laplace operator arising from the semi-discretization
in space. In space we apply the Extended Central Difference Formulas (ECDFs) of order
p = 2, 4, 6. In timewe approximate the diffusion part in implicit way and the reaction part
by a selection of integrators: the Explicit Euler and ADI methods, the symplectic Euler and
a partitioned Runge–Kutta method that are symplectic in the absence of diffusion. Hence,
by estimating λ, for each method we derive stepsize restrictions ht / Fmet(h; d, β, p) in
terms of the stability curve Fmet depending on diffusion and reaction timescales and from
the approximation order in space. For the same schemes, we provide also a dispersion
error analysis. We present numerical simulations for the test heat equation and for the
Lotka–Volterra PDE system with solutions oscillating only in time for the presence of a
centre-type dynamics. In these cases, the implicit-symplectic schemes provide the best
choice. We solve also the Schnakenberg model with spatial patterns oscillating in space
and time in the presence of an attractive limit cycle due to the Turing–Hopf instability. In
this case, all schemes attain closed orbits in the phase space, but the Explicit ADI method
is the best choice from the computational point of view.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Let us consider the PDE system of reaction–diffusion equations given by
vt = d1v + f (v, w) (x, y) ∈ Ω ⊂ R2, t > 0
wt = d1w + g(v, w)
(n · ∇v)|∂Ω = 0 (n · ∇w)|∂Ω = 0
v(x, y, 0) = v0(x, y) w(x, y, 0) = w0(x, y)

(1)
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where the diffusion coefficient is given by d > 0 and zero Neumann boundary conditions (BCs) on a 2D domain Ω are
considered.

In this paper we are mainly interested in the numerical approximation of solutions of (1) that are homogeneous or inho-
mogeneous patterns oscillating in time and also in time and space. It is well known that these oscillations can be caused by
different dynamical mechanisms. In particular, we are interested in the spatio-temporal dynamics of: (i) standing oscilla-
tions around an equilibrium of centre type (see [1]); (ii) inhomogeneous Turing patterns that are oscillatory in time (weak
case) or both in space and time (strong case) that arise in the neighbour of a Turing–Hopf bifurcation point (see [2]). In both
cases J(Pe), the Jacobian of the reaction terms in (1) evaluated at the equilibriumpoint Pe, has complex conjugate eigenvalues.

Concerning the dynamics in (i), where the Jacobian eigenvalues are pure imaginary and typically there exists a time
invariant to be preserved, a huge literature can be reported especially in the ODE cases. We can refer to the book [3] for an
exhaustive review. Only in recent times the attention has been devoted to the numerical solution of PDEs with this kind of
solutions, see e.g. [4,5]. Concerning the dynamics (ii) due to the Turing–Hopf instability, spatio-temporal patterns emerge
by the interaction between the so called diffusion-driven or Turing instability and the Hopf instability. In this case a stable
limit cycle in the absence of diffusion becomes unstable in the presence of diffusion leading towards a spatially uniform
oscillating solution or an oscillatory inhomogeneous pattern. Reaction–diffusion models with this dynamics have been
solved in applied mathematics by different numerical approaches. For example, for time integration, in [6,7] has been used
an operator splittingmethod based on the Explicit Euler; in [8] has been used the code dopri5 based on the Dormand–Prince
Runge–Kutta method of order five; in [9] has been used a Peaceman–Rachford Alternating Direction Implicit (ADI) method
(see for example [10]) coupled with the Euler method. For the approximation of a reaction–diffusion model for metal
growth recently introduced in [11], in [12,13] has been proposed an ADI approach treating implicitly the diffusion terms and
explicitly the reaction terms. As far as we know, a numerical analysis of suitable numerical methods for the Turing–Hopf
dynamics is not present in the literature.

The numerical approximation of the above dynamics is a challenging task for several reasons: (a) long-time integration
is required to obtain the pattern corresponding to the steady state solution; (b) in order to identify the pattern structure,
highly accurate discretization in space is needed, that is very fine meshes on large domain of integration must be used;
(c) to track oscillatory solutions and related closed limit cycle in the phase space suitable time integrators must be used
often with very small timesteps. The main goal of this paper is to provide a flexible mathematical tool to devise efficient
methods dealing with all above points (a)–(c).

To provide high accuracy in space for point (b), here we apply the Method of Lines (MOL) and consider the semi-
discretization by high order finite differences given by the Extended Central Difference Formulas (ECDFp) that approximate
Neumann BCs with the same order of accuracy p = 2, 4, 6. To deal with points (a) and (c), we provide a stability analysis
including information from the diffusion scale d, the reaction timescales given by the real and imaginary parts α and β of
the eigenvalues of J(Pe), and from the spectral properties of the discrete Laplace operator ∆ arising from the space semi-
discretization. The basic idea was firstly introduced to study the numerical approximation of stationary Turing patterns
in [14], where we have introduced a linear test heat equation with a real (positive and negative) reaction scale α, that is for
β = 0. Stepsize restrictions for the 2-SBDF scheme were found, while the best method highlighted was the semi-implicit
ADI-ECDF scheme. Here we extend this approach by considering the more general test problem corresponding to the linear
heat equation with a complex reaction term and the equivalent real reaction–diffusion (RD) system.

Towards this aim, we consider an implicit (IM) approximation for the diffusion part (Laplacian) and different time
integrators for the discretization of the reaction part. In particular, we will consider the classical explicit and implicit Euler
methods; twomethods of first order that are symplectic in the absence of diffusion, i.e. the classical symplectic Eulermethod
reported in [3], here called IMSP_IE, and the Runge–Kutta partitioned scheme introduced in [4] for the predator–prey
dynamics, called IMSP; the explicit and semi-implicit ADI methods.

If ht is the time stepsize, for each method we find stability volumes wrt the 3D axes (ξ , µ, ν), ξ = λ(d, h)ht where
λ is a lumped diffusion scale depending also from the space stepsize h = max(hx, hy) and from the spectral properties
of the discrete Laplace operator; µ = αht accounts for α, the dissipative or unstable contribution of the reaction term;
ν = βht accounts for the oscillatory contribution of the reaction term. For simplicity, we focus on the case |α| small, α ≥ 0
and |α| ≪ |β|. In particular, we consider α = 0 and we analyse in detail the stability regions that are projections of the
above volumes on the plane (ξ , ν). As a consequence, if the methods stay inside the regions they will approximate well
solutions with damped oscillations, while if they stay on the boundaries of the represented regions they will be able to
approximate solutions with standing oscillations. By using information on the spectral properties of the discrete Laplace
operator ∆ for the ECDFp, we specialize the expression of λ and we deduce stepsize restrictions in the space (h, ht), such
that ht / Fmet(h; d, β, p), where for each method analysed Fmet(h; d, β, p) is a stability curve that depends from the space
stepsize, the PDE parameters d, β and from the order p of the space discretization. Hence, given a problem (1), we calculate
the stability curves Fmet , we compare themethods in terms of the obtained stepsize restrictions and thenwe devise themore
efficient schemes (in terms of dissipation) for the oscillatory dynamics of interest. Moreover, for the same schemes applied
to the test PDE problem, we present an analysis of the dispersion error. We prove that all of them have dispersion order
q = 2 for d → 0, but the symplectic methods have the smallest error constants.

The second part of the paper concerns numerical experiments. To study the behaviour of the numerical schemes, we
calculate the space mean values ⟨v(t)⟩, ⟨w(t)⟩ of the numerical solution of (1) and we compare them in the phase plane.
First of all, we solve the test heat equation and we provide a numerical study of dissipation and dispersion errors for
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