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a b s t r a c t

For differential equations with discontinuous right-hand side and, in particular, for neutral
delay equations it may happen that classical solutions do no exist beyond a certain time
instant. In this situation, it is common to consider weak solutions of Utkin (Filippov) type.
This article extends the concept of weak solutions and proposes a new regularization
which eliminates the discontinuities. Codimension-1 and codimension-2 weak solutions
are considered. Numerical experiments show the advantages of the new regularization.
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1. Introduction

Delay differential equations arise when phenomena with memory are modelled. This article considers systems of linear
neutral delay differential equations

ẏ(t) = c
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+
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y(t)


ẏ

αj(y(t))


for t > 0

y(t) = ϕ(t) for t ≤ 0,

(1)

where y ∈ Rn and the functions c(y), Aj(y), ϕ(t) and αj(y) are sufficiently differentiable. We consider time intervals where
the solution satisfies αj(y(t)) < t for all j. The right derivative of the solution of (1) at t = 0 is

ẏ+

0 = c
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, (2)

and in general it is different from its left derivative ẏ−

0 = ϕ̇(0). This produces a jump discontinuity of the derivative ẏ(t) at
t = 0. Since neutral delay equations are considered, the vector field of (1) has a discontinuity when the solution y(t) crosses
one of the manifolds given by αj(y) = 0, or evolves in one of them.
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Neutral delay differential equations are closely connected to piecewise smooth dynamical systems (PWS) and in general
to ordinary differential equations with discontinuous right-hand side. Excellent monographs on these subjects are those
by Filippov [1], Utkin [2] and more recently by Budd, Di Bernardo, Champneys and Kowalczyk [3]. It is well-known that in
general ordinary differential equations with discontinuous right-hand-side f do not have a classical solution, and a weak
solution concept becomes necessary. A quite popular definition of weak solution is due to Filippov, see [1], who suggested to
replace – at a discontinuity point – the right-hand-side by a certain differential inclusion. The resulting method is known as
Filippov convexification (a methodology which treats all components of the solution in the same way, as we will see). Simi-
larly when the vector field f is discontinuous due to a discontinuity of one of its arguments, Utkin convexification consists in
replacing the discontinuous argument by a convex combination of its left and right limits. Since the source of discontinuity
in a neutral delay differential equation of the form ẏ(t) = f (t, y(t), ẏ(α(y(t)))) is a jump of the solution derivative at a past
instant, it would seem natural to follow Utkin’s approach and replace the discontinuous argument ẏ(α(y(t))) by a convex
combination of its left and right-hand limits. In the present work, due to the fact the we consider linear problems, Filippov
and Utkin convexifications coincide.

However, in presence of a discontinuity hypersurface of codimension bigger than 1, such a convexification becomes
ambiguous and a bunch of possible weak solutions arises, so that the contemporary literature has focused its attention on
this situation. Recent papers by Dieci, Elia and Lopez have discussed possible ways to retain a unique weak solution. In [4,5]
and more recently in [6] the authors have provided a systematic way for defining vector fields on the intersection of several
surfaces. Their model passes through the use of a multivalued sign function and is restricted to cases where the sliding
manifold is attractive.

The possibility of choosing several weak solutions is a main issue of the present paper. An alternative to an a-priori
motivated choice for selecting a sliding vector-field, is that of considering regularizations. This idea has also been partially
explored in the literature (see e.g. [7–11]) where singularly perturbed smooth systems are proposed to replace the original
PWS and analysed.

For neutral delay differential equations the discontinuity is due to a jump at breaking points of the derivative of the
solution, which appears on the right hand side of (1) and is determined by the fact that the derivative of the initial function
at t = 0 is different from the derivative of the solution. Here we consider a so-called path-regularization, which replaces the
derivative of the initial datum by a continuous function. Such a path-regularization mainly aims to achieve a few peculiar
properties for the regularized solution, as the closeness to a classical solution, when it exists, and the absence of high
frequency small oscillations, which is a typical drawback (also known as chattering) of introducing singular perturbations
in non-smooth systems.

An interesting by-product of our analysis is the appearance of a so-called hidden (or dummy) dynamics (see also [12]),
which models the instantaneous behaviour of the discontinuous system at a discontinuity. This is the key point to answer a
fundamental question, which involves the (hidden) instantaneous dynamics of a PWS at a discontinuity, which is apparently
not described by the system of ODEs.

The present article starts with a summary of previous results (Section 2) and continues with a numerical experiment
(Section 3), where the effect of the new path-regularization is illustrated. Section 4 discusses the concept of weak solutions
for neutral delay equations. It extends the approach of Filippov [1] and Utkin [2], by allowing more flexibility, which turns
out to be essential for the space regularizations introduced in Section 5. Based on singular perturbation techniques [13] the
characterization of [14] for the kind of solution, which is approximated by the regularization, is extended to arbitrary paths
and to codimension-2 weak solutions. The stability of codimension-2 weak solutions is studied in Section 6 with techni-
cal proofs postponed to Section 7. In particular, it is shown that the new path-regularization can avoid highly oscillatory
approximations that can be present in the standard space regularization.

2. A summary of previous results

In this sectionwe summarize themain results obtained in the recent articles [14,13], which are concernedwith the same
kind of problem addressed here. In [14] we have considered neutral state dependent delay differential equations with a
single state-dependent delay α(y), i.e.

ẏ(t) = f

y(t), ẏ


α(y(t))


y(t) = ϕ(t) for t ≤ 0

(3)

where y ∈ Rn and f (y, z), ϕ(t) andα(y) are smooth functions, andwe assume ϕ̇(0) ≠ ẏ(0+). The possible discontinuities on
the right-hand-side, due to jumps in the solution derivative at breaking points, may determine existence termination for the
solution. Since such a situation can occur onlywhen the solutionmeets themanifoldα(y) = 0 (orα(y) ∈ {breaking points}),
we have to weaken the concept of solution to so-called sliding modes along such amanifold. This is a codimension-1 sliding
and is therefore well-described by Filippov and Utkin methodologies. Our goal is not that of applying such methodologies
directly but to study suitable regularizations and analyse their limit behaviour (with respect to the regularization parameter
ε). In [14] we have considered two regularizations.
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