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a b s t r a c t

This paper deals with the adaptive mesh generation for singularly perturbed nonlinear
parameterized problems with a comparative research study on them. We propose an a
posteriori error estimate for singularly perturbed parameterized problems bymovingmesh
methods with fixed number of mesh points. The well known a priorimeshes are compared
with the proposed one. The comparison results show that the proposed numerical method
is highly effective for the generation of layer adapted a posteriori meshes. A numerical
experiment of the error behavior on different meshes is carried out to highlight the
comparison of the approximated solutions.
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1. Introduction

Singular perturbation and its related applications are very common from many prospects like ion transport across
biological membranes, pollution dispersion in aqueous media, river flow and financial modeling etc. (see Roos et al. [1]).
In general, the solution of singularly perturbed problem exhibits boundary layers. The standard numerical methods on a
uniform mesh fail to provide approximate solutions due to the presence of boundary layers. One effective approach is to
produce the suitable layer adaptedmeshes to capture the layer phenomena. These meshes can be divided in two categories.

1. A priori meshes: If a priori information about the exact solution and its derivatives is available, then this information
can be used to construct a suitable layer adapted mesh. This is rarely the case in real life problems.

2. A posteriori meshes: First, the error is estimated in terms of an arbitrary mesh and computed solution. Thereafter, in
moving mesh context, this estimate will be used to construct a proper layer adapted mesh by a moving mesh algorithm
(starting from an initial user chosen mesh). The generation of these meshes is the main goal of this paper.
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In this paper, we consider the following nonlinear singularly perturbed parameterized problem on Ω = (0, 1) for the a
posteriori analysis:

Lu ≡ εu′(x) + f (x, u(x), λ) = 0, x ∈ Ω,
u(0) = α, u(1) = β,

(1.1)

where 0 < ε ≪ 1 is the singular perturbation parameter. We assume f (x, u(x), λ) ∈ C2(Ω × R × R) with

γ ≤
∂ f
∂u

≤ γ ∗ and δ ≤
∂ f
∂λ

≤ δ∗, (1.2)

for some positive constants γ , γ ∗ δ, δ∗. Under this condition, the problem (1.1) has a unique solution (u(x), λ) (see [2]) on
Ω = [0, 1], where u(x) has a boundary layer at x = 0.

The existence and uniqueness of the solution for (1.1) is first considered in [3]. Thereafter, it is extended for a general class
of parameterized problems in [4]. The numerical analysis of this problem also attracted the research group of Amiraliyev.
One can refer the articles [2,5,6] for the efficient numerical methods on a priori chosen Shishkin and Bakhvalov meshes. For
this problem, the modified upwind scheme on Bakhvalov mesh is suggested by Cen [7]. Numerical analysis based on Runge
Kutta method is considered by Xie et al. [8] and Ramos and Vigo-Aguiar [9]. Spectral methods based on rational spectral
collocation (for e.g., on Chebyshev points) are also suggested byWang et al. [10]. In singular perturbation context, the fitted
operator methods and Booster method can be seen in [11,12] and [13] respectively. Methods based on the combination
of Shishkin and Bakhvalov meshes are considered in [14]. However, the aforementioned methods are all a priori and need
information about the exact solution which is not available, in general. Here, our main goal is to provide a posteriori error
estimate for the parameterized singularly perturbed class of problems.

A commonly-used technique in adaptive mesh generation is based on the idea of equidistribution. A mesh ΩN
≡ {0 =

x0 < x1 < · · · < xN = 1} is said to be equidistributed, if xi

xi−1

M

s, u(s)


ds =

1
N

 1

0
M


s, u(s)


ds, i = 1, . . . ,N, (1.3)

where M

x, u(x)


(> 0) is called the monitor function. In this regard, a convergence analysis based on arc length and

curvature based monitor functions are provided in [15,16] respectively on the final equidistributed meshes, where mainly
the exact solution and the a priori information of its derivatives are used. A higher order error estimate by a curvature
based error monitor function is also proposed in [17] where de Boor’s algorithm [18,19] is used to move the initial mesh
points. However, all of these error estimates have extensively used the a priori information of the solution and also based on
linear singularly perturbed problems. Therefore, the numerical analysis for nonlinear singularly perturbed problems based
on a posteriori estimate remains a challenged problem till today. This paper is concerned on the a posteriori error estimate
generation, which will lead to a layer adaptive mesh for (1.1).

The present paper is arranged as follows. First, the stability of the continuous solution is considered in Section 2, which is
useful for the proposed a posteriori error estimate. Then, we discuss the uniformly convergent results on the a priorimeshes
in Section 3. Thereafter, we establish an a posteriori error estimate for the numerical solution.We shall use the distributional
derivative concept, wherever required in the analysis. In Section 4, the numerical experiments are carried out to compare
the efficiency of the proposed method with the existed methods. Section 5 draws the conclusion of this paper. Throughout
this paper, C denotes a generic positive constant independent of ε, xi and N , which can take different values at different
places. We define ∥ · ∥∞ as ∥φ∥ = ∥φ(x)∥D = maxη∈D |φ(η)| for a function φ defined on some domain D. If the domain is
obvious, we simply write ∥ · ∥∞ as ∥ · ∥.

2. Stability estimate of the continuous solution

This section considers the stability of the continuous solution (u(x), λ).

Lemma 2.1. The continuous solution (u(x), λ) of (1.1) satisfies the following inequality

max(∥u(x)∥, λ) ≤ C, for x ∈ Ω,

where C is a constant, independent of ε. Moreover, for any (v(x), λ) and (w(x), µ) satisfying v(0) = w(0) and v(1) = w(1)
with

Lv − Lw = F ,

where F(x) is a bounded piecewise continuous function, we have

max(∥v − w∥, |λ − µ|) ≤ C∥Lv − Lw∥,

where C is a constant which is independent of ε.
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