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a b s t r a c t

Results of number of geometric operations are in many cases surfaces described implicitly.
Then it is a challenging task to recognize the type of the obtained surface, find its char-
acteristics and for the rational surfaces compute also their parameterizations. In this con-
tribution we will focus on surfaces of revolution. These objects, widely used in geometric
modelling, are generated by rotating a generatrix around a given axis. If the generatrix is
an algebraic curve then so is also the resulting surface, described uniquely by a polynomial
which can be found by some well-established implicitation technique. However, starting
from a polynomial it is not known how to decide if the corresponding algebraic surface is
rotational or not.Motivated by this, our goal is to formulate a simple and efficient algorithm
whose input is a polynomial with the coefficients from some subfield of R and the output
is the answer whether the shape is a surface of revolution. In the affirmative case we also
find the equations of its axis and generatrix. Furthermore, we investigate the problem of
rationality and unirationality of surfaces of revolution and show that this question can be
efficiently answered discussing the rationality of a certain associated planar curve.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction and related work

The choice of a suitable description of a given shape (parametric, or implicit) is fundamental for designing and
studying efficient subsequent geometric algorithms in many technical applications. Parameterizations, most often used in
Computer-Aided (Geometric) Design, allow us to generate points on curves and surfaces, they are also very suitable for
plotting, computing transformations, computing curvatures e.g. for shading and colouring, etc. On the other hand implicit
representations are especially suitable for deciding whether a given point is lying on the object, or outside. In addition, it is
convenient to intersect two shapes when one is given parametrically and the other implicitly. Finally, in computer graphics,
ray tracing is efficiently used for generating an image of implicit algebraic surfaces.

However, we must recall that not every algebraic curve or surface admits a rational parameterization. To be more exact,
letX be a variety over a fieldK. ThenX is said to be unirational if it admits a rational parameterization. Furthermore, if there
exists a proper parameterization (i.e., a parameterization with the rational inverse) thenX is called rational. By the theorem
of Lüroth, a curve has a parameterization if and only if it has a proper parameterization if and only if its genus (see [1] for a
definition of this notion) vanishes. Hence, for planar curves the notions of rationality and unirationality are equivalent for
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any field. Algorithmically, the parameterization problem is well-solved, see e.g. [1–3]. In the surface case the theory differs.
Over algebraically closed field with characteristic zero, by Castelnuovo’s theorem, surface is unirational if and only if it is
rational if and only if the arithmetical genus pa and the second plurigenus P2 are both zero (see [4] for a definition of these
notions). The problem is algorithmically much more difficult than for curves—see e.g. [5] for further details.

The reverse problem (consider a rational parametric description of a curve or a surface, find the corresponding implicit
equation) is called the implicitization problem. For any rational parametric curve or surface, we can always convert it into
implicit form. Nonetheless, the implicitization always involves relatively complicated process and the resulting implicit
form might have large number of coefficients—so, it is not a simple task in general. One can find many generic methods
for implicitizing arbitrary rational curves and surfaces such as resultants, Gröbner bases, moving curves and surfaces, and
µ-bases—see e.g. [6–9].

In what follows we will deal with implicit surfaces of revolution which are created by rotating a curve around a straight
line. Revolution surfaces arewell known since ancient times and very commonobjects in geometricmodelling, as they can be
found everywhere in nature, in human artefacts, in technical practise and also in mathematics. There has been a thorough
previous investigation on finding the implicit equation of a rational surface of revolution. In [10], the authors created an
implicit representation for surfaces of revolution by eliminating the square root from f


x2 + y2, z


, where f (x, z) = 0 is

the implicit equation of the generatrix curve. Another approach to implicitizing rational surfaces of revolutionwas presented
in [11] where the method of moving planes was efficiently used—the implicit equation of the surface of revolution is then
given by the determinant of the matrix whose entries are the 2n moving planes that follow the surface, each derived from
a distinct 3 × 3 determinant. A recent technique for implicitizing rational surfaces of revolution was presented in [12]. In
this paper, the µ-bases for all the moving planes that follow the surface of revolution were found and subsequently the
resultants were used to construct the implicit equation.

In this paper, we will investigate a different interesting problem of computational geometry. We start with an implicit
representation and our goal is to decide if the corresponding algebraic surface is rotational or not. Moreover, in case of
the positive answer we also want to compute the equations of the axis and the generatrix of the rotational surface. The
results of many geometric operations are often described only implicitly. Then it is a challenging task to recognize the type
of the obtained surface, find its characteristics and for the rational surfaces compute also their parameterizations. Let us
recall e.g. the implicit blend surfaces (often of the canal/pipe/rotational-surface type) offering a good flexibility for designing
blends as their shape is not restricted to be constructed as an embedding of a parameter domain. Important contributions
for blending by implicitly given surfaces can be found in [13,14]; several methods for constructing implicit blends were
thoroughly investigated in [15,16]. Obviously, for choosing a suitable consequent geometric technique is necessary to decide
the exact type of the constructed surface. So, the main contribution of this paper is answering the question for the surfaces
of revolution which is mentioned in [17] as still unsolved. In addition we will also focus on the question of rationality and
unirationality of surfaces of revolution and show that this problem can be efficiently solved transforming it to the question
of rationality of a planar curve.

The rest of the paper is organized as follows. In Section 2we consider an algebraic surface given by equation f (x, y, z) = 0
for an irreducible polynomial defined over some subfield K of R, typically Q or its algebraic extensions. The goal is to decide
whether the surface is rotational and eventually to find its axis and profile curve. In this part a symbolic algorithm for
recognition of surfaces of revolution is designed and thoroughly discussed. Section 3 deals with the relation between the
profile curve (and its quadrat) and the (uni)rationality of the associated surface of revolution. Properties of tubular surfaces
are exploited to formulate the results about rationality of surfaces of revolution. Finally we conclude the paper in Section 4.
The theory is documented in detail on two computed examples presented in the Appendix.

2. Implicit surfaces of revolution and their recognition

Let be given a straight line A in Euclidean space E3
R and let G ⊂ E3

R be an algebraic space curve distinct from A. We
assume that G is not a line perpendicular to A. Then the object X created by rotating G around A is an algebraic surface
which is called a surface of revolution (in what follows, we will write shortly SOR) with the axis A and the generatrix G, see
Fig. 1 (Left). Assume X is given by the equation f (x, y, z) = 0 where f ∈ K[x, y, z] for a field K. In addition we consider that
X is absolutely irreducible (i.e., f ≠ f1 · f2 for f1, f2 ∈ C[x, y, z]).

Of course, there exist a lot of generating curves G leading to the same surface. Among them we can find one with a
prominent role—the profile curve P , i.e., the intersection of X with a plane containing the axis, see Fig. 1 (Right).

In this paper, we want to solve the problem of determining surfaces of revolution from their implicit equations. Our goal
is to formulate a simple and efficient symbolic algorithm whose input will be a polynomial with the coefficients from a
field and the output will be the decision whether the described algebraic surface is SOR or not. We start with a considerably
simpler situation—in particular, we assume that X is SOR whose axis coincides with the coordinate x-axis. Thus we may
obtain its profile curve P by intersecting X for instance with the plane z = 0. Hence, we can consider P as a curve in
xy-plane. Obviously, P is symmetric with respect to the x-axis. Since (x, y) ∈ P if and only if (x,−y) ∈ P we deduce that
its equation p(x, y) = f (x, y, 0) = 0 can be written in one of the following two forms

i

pi(x)y2i = 0, or


i

pi(x)y2i+1
= 0. (1)
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