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a b s t r a c t

A power penalty method for solving nonlinear second-order cone complementarity prob-
lems (SOCCPs) is proposed. By using this method, the nonlinear SOCCP is converted to
asymptotic nonlinear equations. Themerit of thismethod shows that the solution sequence
of the asymptotic nonlinear equations converges to the solution of the nonlinear SOCCP at
an exponential rate when the penalty parameter tends to positive infinity under mild as-
sumptions. An algorithm is constructed and numerical examples indicate the feasibility of
our method.
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1. Introduction

In this paper, let K ⊂ Rn be Cartesian product of second-order cones (SOCs), also called Lorentz cones, i.e.,

K = K n1 × K n2 × · · · × K nm (1.1)

withm, n1, . . . , nm ≥ 1, n1 + · · · + nm = n, and K ni ⊂ Rni being the ni-dimensional SOC defined by

K ni = {(x1, x2) ∈ R × Rni−1
| x1 ≥ ∥x2∥},

where ∥ · ∥ denotes the Euclidean norm and (x1, x2) denotes (x1, xT2)
T for convenience. If ni = 1, K 1 denotes the set of

nonnegative reals R+. Corresponding to the structure of K , we write x = (x1, . . . , xm) with xi ∈ Rni , i = 1, 2, . . . ,m. The
symbols intK and bdK denote the interior of K and the boundary of K respectively. For any x, y ∈ Rn, we denote the partially
order relations:

(i) x≽K y (or y≼K x) if x − y ∈ K ;
(ii) x≻K y (or y≺K x) if x − y ∈ intK .

Thus, x≽K 0 if and only if x ∈ K and x≻K 0 if and only if x ∈ intK .
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Now we consider the second-order cone complementarity problem (SOCCP) (see [1–4]):
Find x, y ∈ Rn and ζ ∈ Rl such that

x ∈ K , y ∈ K , ⟨x, y⟩ = 0, E(x, y, ζ ) = 0, (1.2)

where E : Rn
× Rn

× Rl
→ Rn

× Rl is a continuously differentiable mapping in general, ⟨·, ·⟩ denotes the Euclidean inner
product, and K is shown in (1.1).

In particular, when l = 0 and the mapping E has the form E(x, y, ζ ) = F(x)− y for some nonlinear function F : Rn
→ Rn,

the SOCCP (1.2) becomes the following second-order cone nonlinear complementarity problem (SOCNCP):
Find x ∈ Rn such that

x ∈ K , F(x) ∈ K , ⟨x, F(x)⟩ = 0, (1.3)

where F = (F1, . . . , Fm) with Fi : Rn
→ Rni , i = 1, . . . ,m. In this paper, we consider F is a continuous function.

The SOCNCP (1.3), in which F does not involve the additional variable ζ , may seem rather restrictive since it is a special
case of the SOCCP (1.2). However, for the following second-order cone programming (SOCP):

min f (z)
s.t. g(z) ∈ K,

(1.4)

where f : Rs
→ R and g : Rs

→ Rt (including nonlinear functions) are continuously differentiable functions, and K is
some Cartesian product of SOCs, it is worth noting that the Karush–Kuhn–Tucker (KKT) conditions of (1.4) can be written
in the form of the SOCNCP (1.3) (see [4]). Particularly, if the SOCP (1.4) is convex problem, then a point z∗ is one solution
of (1.4) whenever the point satisfies the KKT conditions of the SOCP under appropriate constraint qualification (CQ) (see
[5,6]). Therefore, SOCNCP (1.3) is closely related to the convex SOCP. When the mapping F is affine, SOCNCP (1.3) reduces
to second-order cone linear complementarity problem (SOCLCP).

During the last two decades, extensive researches have been done for the SOCP and SOCCP for their broad range of ap-
plications in engineering design, control, finance, management science, mechanics and economics (see [7–9] and the refer-
ences therein). Convex SOCP covers linear programs, convexquadratic programs, quadratically constrained convexquadratic
programs as well as other related problems. Various numerical methods have been proposed for solving the SOCP and
SOCCP, such as the interior-point method (see [7,8,10–13]), the smoothing Newtonmethod (see [1,14–16]), the smoothing-
regularization method (see [4]), the semismooth Newton method (see [17,18]), the merit function method (see [19–21]),
the matrix splitting method (see [22,23]) and so on. Some approaches, such as [1,4,14,15], require solving the associated
Newton equations in which O(n3) flops are involved, which might be inefficient when the dimension of the problem gets
large (see [23]). On the other hand, many complementarity problems require efficient and accurate numerical methods.

The penalty function method is an important method in solving constrained optimization problem. The l1 exact penalty
function and lower order penalty function possess many nice properties and attract much attention (see [24–29]). The
smoothing of the exact penalty methods also attracts much attention (see [30–32]). In [33], Wang and Yang proposed a
power penaltymethod (PPM) for solving the linear complementarity problem (LCP), inwhich the LCP is converted to asymp-
totic nonlinear equations. Themerit of thismethod shows that the solutions of the asymptotic nonlinear equations converge
to the solution of the LCP at an exponential rate when the penalty parameter tends to positive infinity under some mild as-
sumptions. In [34], Huang andWang extend PPM to solve a class of nonlinear complementarity problem (NCP). The solutions
of the asymptotic nonlinear equations also converge to the solution of the NCP at an exponential rate. The power penalty
method is actually a kind of lower order penalty method. Due to the well performance of themethod in [33,34], the purpose
of this paper is to present a power penalty method for solving the SOCNCP under mild assumptions, since such amethod for
solving the SOCLCP has already obtained in [35]. To the best of our knowledge, there are no advances on the development
of PPM for solving the SOCNCP in Rn.

In this work, we convert SOCNCP (1.3) to asymptotic nonlinear equations with penalty parameter σ . Under the assump-
tion that F(x) is ξ -monotone, the SOCNCP (1.3) and nonlinear equations with penalty parameter σ are all unique solvable,
where the equivalence between the complementarity problem and some variational inequality plays an important role. We
prove that the solutions of asymptotic nonlinear equations converge to the solution of the SOCNCP at an exponential rate
O(σ−k/ξ ) when σ → +∞. If the ξ -monotonicity of F(x) is not satisfied, we still show that any limit point of solution se-
quence solves the SOCNCP (1.3) provided that F(x) is continuous. However, we cannot determine the convergence rate in
this situation. The corresponding algorithm is constructed and numerical examples indicate the feasibility of our method.

This paper is organized as follows. Some preliminary results for SOC are presented in the next section. In Section 3, we
propose PPM to solve SOCNCP (1.3), the corresponding algorithm is constructed in this section. The convergence analysis
for PPM is carried out in Section 4. And in Section 5, numerical results are presented to demonstrate our theoretical findings
and we compare the numerical performance of PPM with smoothing Fischer–Burmeister function method. Finally, we give
the conclusions.

2. Preliminary results

In this section, we give some preliminary results for a single block SOC, i.e., K = K n, since our analysis can be easily
extended to the general case (1.1). For any x = (x1, x2) ∈ R × Rn−1, y = (y1, y2) ∈ R × Rn−1, we define their Jordan product



Download	English	Version:

https://daneshyari.com/en/article/4638278

Download	Persian	Version:

https://daneshyari.com/article/4638278

Daneshyari.com

https://daneshyari.com/en/article/4638278
https://daneshyari.com/article/4638278
https://daneshyari.com/

