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h i g h l i g h t s

• Presents two tree traversing strategies for SDDP.
• Presents three cut selection algorithms to improve SDDP performance.
• Considers the whole Brazilian Power System in our computational results.
• Significant reduction in computational time without compromising the policy.
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a b s t r a c t

This paper is concerned with tuning the Stochastic Dual Dynamic Programming algorithm
to make it more computationally efficient. We report the results of some computational
experiments on a large-scale hydrothermal schedulingmodel developed for Brazil.We find
that the best improvements in computation time are obtained froman implementation that
increases the number of scenarios in the forward pass with each iteration and selects cuts
to be included in the stage problems in each iteration. This gives an order of magnitude
decrease in computation time with little change in solution quality.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The Stochastic Dual Dynamic Programming (SDDP) algorithm of Pereira and Pinto [1] is a technique for attacking multi-
stage stochastic linear programs that have a stage-wise independence property that makes them amenable to dynamic
programming. This method approximates the future cost function of dynamic programming using a piecewise linear
outer approximation, defined by cutting planes computed by solving linear programs. This helps to mitigate the curse of
dimensionality that arises from discretizing the state variables. The intractability arising from a branching scenario tree is
avoided by essentially assuming stage-wise independent uncertainty. This allows cuts to be shared between different states,
effectively collapsing the scenario tree. Although it was developed over twenty years ago, and has been cited over the years
in many applied papers, SDDP has received some recent attention in the mathematical programming literature [2–7] that
explores themathematical properties of thismethod, in some cases extending it to deal with risk-averse objective functions.

This paper is concernedwith someof the implementationdetails of SDDPalgorithms. By carrying out some computational
tests on a real application, we attempt to draw some conclusions about how the basic methodmight be improved by tuning
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it to build a near optimal policy in the shortest computation time. There are basically two techniques for tuning the algorithm
that we shall investigate. The first concerns how one should visit the scenarios in the SDDP algorithm. The classical version
of SDDP [1] samples a fixed number of scenarios for each ‘‘forward pass’’. We compare this with alternative strategies that
traverse one scenario at a time [5], as well as one that increases the number of scenarios per pass as the algorithm proceeds
(as discussed in [7]).

In tandem with scenario selection, we investigate several strategies for selecting cuts to include in the linear program-
ming problems that are solved at each stage. This can lead to a dramatic decrease in computation timewith little degradation
in the performance of the policies obtained. As a consequence, cut selection strategies are crucial for solving real-life hy-
drothermal scheduling problems using SDDP-type algorithms within a computation time that must be kept modest so that
models can be solved frequently by the Independent System Operator and by energy companies to provide support to their
decisions.

The paper is laid out as follows. In Section 2we recall the basic algorithm for SDDP. Section 3 describes the three different
tree-traversal strategies we shall test and Section 4 describes methods we use for selecting cuts. Section 5 then shows the
results of applying these strategies to a test problem that is derived from a long-term model of the Brazilian electricity
system. We make our final remarks in Section 6.

2. Stochastic dual dynamic programming

To describe how SDDP works, we consider a class of stochastic linear programs that have T stages, denoted t =

1, 2, . . . , T , in each of which a random right-hand-side vector bt(ωt) ∈ Rm has a finite number of realizations defined
by ωt ∈ Ωt . We assume that the outcomes ωt are stage-wise independent, and that Ω1 is a singleton, so the first-stage
problem is

z = min c⊤

1 x1 + E[Q2(x1, ω2)]

s.t. A1x1 = b1,
x1 ≥ 0,

(1)

where x1 ∈ Rn is the first stage decision and c1 ∈ Rn a cost vector, A1 is a m × nmatrix, and b1 ∈ Rm.
We denote by Q2(x1, ω2) the second stage costs associated with decision x1 and realization ω2 ∈ Ω2. The problem to be

solved in the second and later stages t , given state xt−1 and realization ωt , can be written as

Qt(xt−1, ωt) = min c⊤

t xt + E[Qt+1(xt , ωt+1)]

s.t. Atxt = bt(ωt) − Etxt−1, [πt(ωt)]

xt ≥ 0,
(2)

where xt ∈ Rn is the decision in stage t, ct its cost, and At and Et denote m × n matrices. Here πt(ωt) denotes the dual
variables of the constraints. In stochastic control terminology E[Qt+1(xt , ωt+1)] represents a Bellman function. In the last
stage we assume either that E[QT+1(xT , ωT+1)] = 0, or that there is a convex polyhedral function that defines the expected
future cost after stage T .

The information structure of the problem defined by (1) and (2) is illustrated in Fig. 1 in the form of a scenario tree. A
scenario tree starts from a root node that defines the first stage decisions (1), and as we move forward in time it branches
in the set of possible realizations for the random variable. As one can notice from the figure, the number of variables and
constraints in themultistage stochastic programming problemgrows very fastwith the number of children nodes (branches)
and stages, which makes it impossible to solve in most real applications. In order to overcome this difficulty, the SDDP
algorithm relies on a stage-wise independence assumption to enable a dynamic programming simplification. By sampling
scenarios, a policy for this dynamic program is computed that is close to optimal for the values of the state variables that
are visited by this policy.

Before defining the sampling procedure, it is important to understand that the algorithm aims at building a policy that
is defined at stage t by a polyhedral outer approximation of E[Qt+1(xt , ωt+1)] resulting in an approximate value function
Qt(xt−1, ωt). The outer approximation is constructed using cutting planes called Benders cuts, or just cuts. In other words
in each tth-stage problem, E[Qt+1(xt , ωt+1)] is replaced by the variable θt+1 which is constrained by the set of linear
inequalities

θt+1 + π̄⊤

t+1,kEt+1xt ≥ ḡt+1,k for k = 1, 2, . . . , K , (3)

where K is the number of cuts. Here π̄t+1,k = E[πt+1(ωt+1)], which defines the gradient −π̄⊤

t+1,kEt+1 and the intercept
ḡt+1,k for cut k in stage t , where

ḡt+1,k = E[Qt+1(xkt , ωt+1)] + π̄⊤

t+1,kEt+1xkt .
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