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a b s t r a c t

The paper deals with numerical solving of nonlinear integro-parabolic problems based on
the method of upper and lower solutions. A monotone iterative method is constructed.
Existence and uniqueness of a solution to the nonlinear difference scheme are established.
An analysis of convergence rates of the monotone iterative method is given. Construction
of initial upper and lower solutions is discussed. Numerical experiments are presented.
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1. Introduction

Integro-parabolic differential equations of Volterra type arise in the chemical, physical and engineering sciences (see [1]
for details). In this paper we give a numerical treatment for nonlinear integro-parabolic differential equations of Volterra
type. The parabolic problem under consideration is given in the form

ut − Lu + f (x, t, u)+

 t

0
g0(x, t, s, u(x, s))ds = 0, (x, t) ∈ ω × (0, T ], (1)

u(x, t) = h(x, t), (x, t) ∈ ∂ω × (0, T ],

u(x, 0) = ψ(x), x ∈ ω,

where ω is a connected bounded domain in Rκ (κ = 1, 2, . . .) with boundary ∂ω. The linear differential operator L is given
by

Lu =

κ
α=1

∂

∂xα


D(x, t)

∂u
∂xα


+

κ
α=1

vα(x, t)
∂u
∂xα

,

where the coefficients of the differential operators are smooth and D is positive in ω × [0, T ]. It is also assumed that the
functions f , g0, h and ψ are smooth in their respective domains.

In solving suchnonlinear problems by the finite difference or finite elementmethods, the corresponding discrete problem
on each discrete time level is usually formulated as a nonlinear system of algebraic equations. A basic mathematical concern
of this problem is whether the nonlinear system possesses a solution. This nonlinear system requires some iterativemethod
for the computation of numerical solutions. This leads to the question of convergence of the sequence of iterations. The aim
of this paper is to investigate the above questions concerning the existence and uniqueness of a solution to the nonlinear
system, methods of iterations for the computation of the solution.
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Our iterative scheme is based on the method of upper and lower solutions and associated monotone iterates. By
using upper and lower solutions as two initial iterations, one can construct two monotone sequences which converge
monotonically from above and below, respectively, to a solution of the problem.

Monotone iterative schemes for solving nonlinear parabolic equations were used in [2–8]. In [9], a monotone iterative
method for solving nonlinear integro-parabolic equations of Fredholm type is presented. Here, the two important points
in investigating the monotone iterative method concerning a stopping criterion on each time level and estimates of
convergence rates, in the case of solving linear discrete systems on each time level inexactly, were not given. In this paper,
we investigate the monotone iterative method in the case when on each time level nonlinear difference schemes are solved
inexactly, and give an analysis of convergence rates of the monotone iterative method.

The structure of the paper as follows. In Section 2, we introduce a nonlinear difference scheme for the numerical solution
of (1). A monotone iterative method is presented in Section 3. Existence and uniqueness of the solution to the nonlinear
difference scheme are established. An analysis of convergence rates of themonotone iterativemethod is given. Convergence
of the nonlinear difference scheme to the nonlinear integro-parabolic problem (1) is established. Section 4 deals with
construction of initial upper and lower solutions. Section 5 presents results of numerical experiments.

2. The nonlinear difference scheme

On the domains ω and [0, T ], we introduce meshes ωh and ωτ , respectively. For solving (1), consider the nonlinear two-
level implicit difference scheme

LU(p, tk)+ f (p, tk,U)+ g(p, tk,U)− τ−1
k U(p, tk−1) = 0, (2)

(p, tk) ∈ ωh
× (ωτ \ {0}),

with the boundary and initial conditions

U(p, tk) = h(p, tk), (p, tk) ∈ ∂ωh
× (ωτ \ {0}),

U(p, 0) = ψ(p), p ∈ ωh,

where ∂ωh is the boundary of ωh and time steps τk = tk − tk−1, k ≥ 1, t0 = 0.
The difference operator L is defined by

LU(p, tk) = LhU(p, tk)+ τ−1
k U(p, tk),

LhU(p, tk) = d(p, tk)U(p, tk)−


p′∈σ ′(p)

a(p′, tk)U(p′, tk),

where σ ′(p) = σ(p) \ {p}, σ(p) is a stencil of the scheme at an interior mesh point p ∈ ωh. We make the following
assumptions on the coefficients of the difference operator Lh:

d(p, tk) > 0, a(p′, tk) ≥ 0, p′
∈ σ ′(p), (3)

d(p, tk)−


p′∈σ ′(p)

a(p′, tk) ≥ 0, (p, tk) ∈ ωh
× (ωτ \ {0}).

The integral g in (1) is approximated by the finite sum g based on the Riemann sum (the rectangular rule)

g(p, tk,U) =

k
l=1

τlg0(p, tk, tl,U(p, tl)).

We also assume that the mesh ωh is connected. It means that for two interior mesh points p̃ and p̂, there exists a finite
set of interior mesh points {p1, p2, . . . , ps} such that

p1 ∈ σ ′(p̃), p2 ∈ σ ′(p1), . . . , ps ∈ σ ′(ps−1), p̂ ∈ σ ′(ps). (4)

On each time level tk, k ≥ 1, introduce the linear problem

(L + c)W (p, tk) = Ψ (p, tk), p ∈ ωh, (5)
c(p, tk) ≥ 0, W (p, tk) = h(p, tk), p ∈ ∂ωh.

We now formulate the maximum principle for the difference operator L + c and give an estimate to the solution to (5).

Lemma 1. Let the coefficients of the difference operator Lh satisfy (3) and the mesh ωh be connected.
(i) If a mesh function W (p, tk) satisfies the conditions

(L + c)W (p, tk) ≥ 0 (≤ 0), p ∈ ωh,

W (p, tk) ≥ 0 (≤ 0), p ∈ ∂ωh,

then W (p, tk) ≥ 0 (≤ 0) in ωh.
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