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a b s t r a c t

This paper presents a state space description for wavelet FIR filter banks with perfect
reconstruction using special orthonormal basis functions. The FIR structure guarantees the
BIBO stability, robustness and improves the filter divergence problem while orthonormal
basis functions have characteristics that make them attractive in the modeling of dynamic
systems. The state space description presented in this paper has all of those advantages and
is minimal.

© 2015 Published by Elsevier B.V.

1. Introduction

Dynamic systemmodels are important to study problems that arise in closed-loop systems, systems in which conditions
are converted into information that can be observed and controlled [1]. The modeling of real systems is of great importance
to engineers, since models are usually needed for the design of new processes and the analysis of existing ones. Generally,
advanced techniques of controller design, optimization and supervision are based on process models, and the quality of the
model directly influences the quality of the final solution to the problem [2–4].

Several techniques are proposed formodeling dynamic systems. There aremodels obtained byusing orthogonal functions
that form a complete basis for the Lebesgue L2[0, ∞) space and orthonormal basis functions [2,3]. Such models have some
characteristics that make them attractive for dynamic systems modeling: absence of output recursion, not requiring prior
knowledge of the exact structure of the vector of regression; possibility to increase the capacity of representation of the
model by increasing the number of orthonormal functions employed; natural uncoupling of the outputs in multivariable
models; tolerance to unmodeled dynamics, and others [3].

On the other hand, the FIR (Finite Impulse Response) structure does not only guarantee both BIBO (Bounded In-
put/Bounded Output) stability and robustness to some parameter changes, but also improves the filter divergence prob-
lem [5–7].
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This paper presents a state space description for an orthonormal basis of functions developed in [8], which are used as
wavelet FIR filter banks with perfect reconstruction. This description holds the advantages presented by orthonormal basis
functions and the FIR structure, culminating in a minimal realization.

The contribution of this paper consists in developing a realization in state space for awavelet filter bank, with the explicit
presence of parameters that can be freely adjusted keeping the guarantees of perfect reconstruction and orthogonality. For
this purpose, the parameterization described in [8] is adopted as a starting point. The novelty of the present work with
respect to [8] is the proposal of a realization of the resulting filter in the state space.

Other studies about state space using FIR filters present some properties in common in relation to the proposed
parameterization, and other aspects that can be checked in [9–13,5–7]. Unlike these studies, this work employs orthonormal
wavelet filter banks, rather than FIR filters in a general way. An advantage of thewavelet parameterization in the state space
is the presence of a certain number of free parameters that can be adjusted by the designer.

Within the scope of possible applications and extensions of the present paper, it isworthmentioning some representative
contributions about innovative filtering and auxiliarymodel based estimationmethods [14], aswell as identification of dual-
rate systems [15,16] using the hierarchical identification principle. Identification methods for a Hammerstein system with
its linear dynamic subsystem being an observer canonical state space model were exploited in [17], with an approach that
can effectively solve the identification problem of a class of bilinear identification systems. A discussion about parameter
estimation algorithm to establish the mathematical models for dynamic systems and an estimated state based on recursive
least squares algorithm can be found in [18]. A study considering modeling and identification problems for linear systems
based on canonical state space models with d-step state-delay is given in [19]. A study about state filtering and parameter
estimation problems for state space systems with scarce output availability using least squares based algorithm and an
observer based parameter estimation algorithm is developed by [20]. About reconstruction, some related issues of non-
uniformly sampled systems, includingmodel derivation, controllability andobservability, computation of single-ratemodels
with different sampling periods, reconstruction of continuous-time systems, and parameter identification of non-uniformly
sampled discrete-time systems are discussed in [21]. These works can link the results of this paper to other possible
extensions.

2. Background

Sherlock and Monro [8] developed a formulation to parameterize the space of orthonormal wavelets by using a set of
angular parameters, adapting the work about factorization of paraunitary matrices of [4]. This formulation is presented
below.

Consider the low-pass filter analysis in a two-channel orthonormal filter bank with 2N coefficients {hi} and its
z-transform

H(z) =

2N−1
i=0

hiz−i
= H0(z2) + z−1H1(z2),

where H0 and H1 are the polyphase components of H(z), namely,

H0(z) =

N−1
i=0

h2iz−1 and H1(z) =

N−1
i=0

h2i+1z−1. (1)

In [4], Vaidyanathan proposed the factorization of paraunitary matrices Hp(z) in the following manner

Hp(z) =


H0(z) H1(z)
G0(z) G1(z)



=


C0 S0

−S0 C0

 N−1
i=1


1 0
0 z−1

 
Ci Si

−Si Ci


, (2)

where Ci = cos(αi), Si = sin(αi) and G0(z) and G1(z) are the polyphase components of the high-pass filter analysis G(z).
This factorization generates all perfect reconstruction two-channel orthonormal filter banks with 2N coefficients, i.e., any
filter can be written in terms of N parameters αi ∈ [0, 2π). However, in order to the filter bank be built in terms of these
parameters correspond to a basis of orthonormal wavelets, it is necessary that

2N−1
i=0

hi =
√
2. (3)

The formulation of Sherlock and Monro [8] is developed from (2). In fact this formulation consists in rewriting (2) in a
recursive form expressing the polyphase matrices corresponding to filters with length 2(N + 1) in terms of the polyphase
matrices corresponding to the filters of length 2N

H(N+1)
p (z) = H(N)

p (z)

1 0
0 z−1

 
CN SN

−SN CN


(4)
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