
Journal of Computational and Applied Mathematics 291 (2016) 332–347

Contents lists available at ScienceDirect

Journal of Computational and Applied
Mathematics

journal homepage: www.elsevier.com/locate/cam

The majorant method in the theory of Newton–Kantorovich
approximations and generalized Lipschitz conditions
Ioannis K. Argyros a,∗, Saïd Hilout b
a Cameron University, Department of Mathematical Sciences, Lawton, OK 73505, USA
b Poitiers University, Laboratoire de Mathématiques et Applications, Bd. Pierre et Marie Curie, Téléport 2, B.P. 30179, 86962 Futuroscope
Chasseneuil Cedex, France

a r t i c l e i n f o

Article history:
Received 10 September 2014

MSC:
65G99
65J15
47H17
49M15

Keywords:
Modified Newton’s method
Majorant method
Banach space
Rate of convergence
Local/semilocal convergence
Kantorovich’s hypothesis

a b s t r a c t

We provide a semilocal as well as a local convergence analysis for Newton’s and modified
Newton’s methods in order to approximate a locally unique solution of a nonlinear
equation in a Banach space setting. We use more precise majorizing sequences than in
earlier studies such as Appell et al. (1997), Appell et al. (1991), Argyros (2004), Argyros
and Hilout (2009), Kantorovich and Akilov (1982), Ortega and Rheinboldt (1970) and
generalized Lipschitz continuity conditions. Our sufficient convergence conditions are
weaker than before and our convergence analysis is tighter. Special cases and numerical
examples are also given in this study.
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1. Introduction

LetX,Y be Banach spaces and letD ⊆ X be closed and convex. In the present paperwe are concernedwith the problem
of approximating a locally unique solution x⋆ of equation

F(x) = 0, (1.1)

where, F : D −→ Y is Fréchet-differentiable.
Many problems from Computational Sciences can be brought in the form of Eq. (1.1) usingmathematical modeling [1–3].

The solution of these equations can rarely be found in closed form. Therefore the solution methods for these equations
are usually iterative. Note that in Computational Sciences, the practice of numerical analysis for finding such solutions is
essentially connected to Newton-type methods [1,2,4,5].

Newton’s method is defined by

xn+1 = xn − F ′(xn)−1 F(xn) for each n = 0, 1, 2, . . . , (1.2)

where x0 ∈ D is an initial point. Linear operator F ′(x) denotes the Fréchet-derivative of F at x ∈ D . Newton’s method
is undoubtedly the most popular iterative process for generating a sequence {xn} approximating x⋆. This method requires
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the inversion of linear operator F ′(x) as well as the computation of the function F at x = xn (n ∈ N) at each step. If x0 is
close enough to x⋆, Newton’s method converges quadratically [1,4]. The inversion of F ′(x) (x ∈ D) at each step may be too
expensive or unavailable. That is why the modified Newton’s method

yn+1 = yn − F ′(y0)−1 F(yn) for each n = 0, 1, 2, . . . (y0 = x0 ∈ D) (1.3)

can be used in this case instead of Newton’s method. However, the convergence is only linear [6,7,1,4]. The background on
the convergence of Newton’s and modified Newton’s methods can be found in [8–10,6,11,12,7,1,13,14,2,15–18,3,19–27,4,5,
28–48].

The study about convergence matter of Newton’s or modified Newton’s method is usually centered on two types:
semilocal and local convergence analyses. The semilocal convergence matter is, based on the information around an initial
point, to give criteria ensuring the convergence of Newton’smethod; while the local one is, based on the information around
a solution, to find estimates of the radii of convergence balls. There is a plethora of studies on theweakness and/or extension
of the hypothesis made on the underlying operators; see for examples [1–5] and the references therein. Concerning the
semilocal convergence of Newton’s method, one of the most important results is the celebrated Kantorovich theorem for
solving nonlinear equations. This theorem provides a simple and transparent convergence criterion for operators with
bounded second derivatives F ′′ or the Lipschitz continuous first derivatives. The second type analysis for numerical methods
is the local convergence. Traub and Woźniakowsi [44], Rheinboldt [41,42], Rall [40], Argyros [1] and other authors gave
estimates of the radii of local convergence balls when the Fréchet-derivatives are Lipschitz continuous around a solution.

Concerning the semilocal convergence of both methods, the Lipschitz-type condition

∥F ′(x0)−1 (F ′(x)− F ′(y))∥ ≤ ω(∥x − y∥) for each x, y ∈ D (1.4)

has been used [9,10,1,20,22–25,32–39,46–48], where ω is a strictly increasing and continuous function with

ω(0) = 0. (1.5)

If ω(t) = L t for t ≥ 0, we obtain the Lipschitz case, whereas if ω(t) = L tµ for t ≥ 0 and fixed µ ∈ [0, 1), we obtain the
Hölder case. Sufficient convergence criteria in the above references as well as error bounds on the distances ∥xn+1 − xn∥,
∥xn − x⋆∥ for each n = 0, 1, 2, . . . have been established using the majorizing sequence {un} given by

u0 = 0, u1 = η > 0,

un+2 = un+1 +

 1
0 ω(θ (un+1 − un)) dθ (un+1 − un)

1 − ω(un+1)
for each n = 0, 1, 2, . . . .

(1.6)

Using (1.6) (see [1,9,10]) we have that

un+2 ≤ un+1 +
χ(un+1)

1 − ω(un+1)
for each n = 0, 1, 2, . . .

where,

χ(t) = η − t +

 1

0
ω(r) dr and ω(t) = sup

t1+t2=t
(ω(t1)+ ω(t2)).

Under the sameorweaker convergence criteria,weprovided a convergence analysis [6,1,17,3]with the following advantages
over the earlier stated works: tighter error bounds on the distances ∥xn+1 −xn∥, ∥xn −x⋆∥ for each n = 0, 1, 2, . . . and an at
least as precise information on the location of the solution x⋆. In order for us to achieve all these advantages, we introduced
the center Lipschitz-condition

∥F ′(x0)−1 (F ′(x)− F ′(x0))∥ ≤ ω0(∥x − x0∥) for each x ∈ D (1.7)

where ω0 is a strictly increasing and continuous function with the same property as (1.5). Condition (1.7) follows from (1.4)
and

ω0(t) ≤ ω(t) for each t ≥ 0 (1.8)

holds in general. Note also that ω(t)
ω0(t)

(t ≥ 0) can be arbitrarily large [6,11,12,7,1,13,14,2,15–18,3]. Using (1.4) one can show

∥F ′(x)−1 F ′(x0)∥ ≤
1

1 − ω(∥x − x0∥)
(1.9)

for each x in a certain subsetD0 ofD (to be precised later). This estimate leads tomajorizing sequence {un} [1,9,10]. However,
using the less expensive and more precise (1.7), we obtain that

∥F ′(x)−1 F ′(x0)∥ ≤
1

1 − ω0(∥x − x0∥)
for each x ∈ D. (1.10)
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