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a b s t r a c t

This work presents a new algorithm for matrix exponential computation that significantly
simplifies a Taylor scaling and squaring algorithm presented previously by the authors,
preserving accuracy. A Matlab version of the new simplified algorithm has been compared
with the original algorithm, providing similar results in terms of accuracy, but reducing
processing time. It has also been compared with two state-of-the-art implementations
based on Padé approximations, one commercial and the other implemented in Matlab,
getting better accuracy and processing time results in the majority of cases.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Matrix function computation has received remarkable attention in the last decades due to its usefulness in a great variety
of engineering problems. Especially noteworthy is thematrix exponential, which emerge in the solution of systems of linear
differential equations in numerous applications and a large number of methods for its computation have been proposed
[1,2]. Moreover, inmany cases, the resolution of these systems involve largematrices, so, not only accurate, but also efficient
methods are needed. In this sense, the authors presented in [3] two modifications of a Taylor-based scaling and squaring
algorithm to reduce computational costs while preserving accuracy.

In [4] the authors presented a scaling and squaring Taylor algorithm based on an improvedmixed backward and forward
error analysis, which was more accurate than existing state-of-the-art algorithms for matrix exponential such as that in
[5], in the majority of test matrices with a lower or similar cost. Subsequently, in [6], the authors gave a new formula for
the forward relative error of matrix exponential Taylor approximation and proposed to increase the allowed forward error
bound depending on the matrix size and the Taylor approximation order. This algorithm reduces the computational cost
in exchange for a small impact in accuracy. In this work, we present a new algorithm that significantly simplifies the one
presented in [4] providing a competitive scaling and squaring algorithm for matrix exponential computation in comparison
with both previous algorithms and the state-of-the-art implementations based on Padé approximations from [5,7].

Throughout this paper Cn×n denotes the set of complex matrices of size n × n, I denotes the identity matrix for this
set, ρ(A) is the spectral radius of matrix A, and N denotes the set of positive integers. The matrix norm ∥·∥ denotes any
subordinate matrix norm; in particular ∥·∥1 and ∥·∥2 are the 1-norm and the 2-norm, respectively. The symbols ⌈·⌉ and ⌊·⌋
denote the smallest following and the largest previous integer, respectively. This paper is organized as follows: Section 2
presents a general scaling and squaring Taylor algorithm; Section 3 presents the scaling and squaring error analysis; the
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new algorithm is given in Section 4; finally, Section 5 shows numerical results and Section 6 gives some conclusions. Next
Theorem 1 from [6] and the new Theorem 2 will be used in Section 3 to bound the norm of matrix power series.

Theorem 1. Let hl(x) =


k≥l bkx
k be a power series with radius of convergence R, and let h̃l(x) =


k≥l |bk|x

k. For any matrix
A ∈ Cn×n with ρ(A) < R, if ak is an upper bound for ∥Ak

∥ (∥Ak
∥ ≤ ak), p ∈ N, 1 ≤ p ≤ l, p0 ∈ N is the multiple of p with

l ≤ p0 ≤ l+ p− 1, and

αp = max{a
1
k
k : k = p, l, l+ 1, l+ 2, . . . , p0 − 1, p0 + 1, p0 + 2, . . . , l+ p− 1}, (1)

then ∥hl(A)∥ ≤ h̃l(αp).

Theorem 2. Let l ∈ N, l ≥ 1, and let q ∈ N be the minimum value with 1 ≤ q ≤ l such that

∥Aq
∥

1
q ≤ max{∥Ak

∥
1
k : k = l, l+ 1, . . . , q0 − 1, q0 + 1, q0 + 2, . . . , l+ q− 1}, (2)

where q0 ∈ N is the multiple of q with l ≤ q0 ≤ l+ q− 1. Then if

∥Ak0∥
1
k0 = max{∥Ak

∥
1
k : k = l, l+ 1, . . . , q0 − 1, q0 + 1, q0 + 2, . . . , l+ q− 1} (3)

then

max{∥Ak
∥

1
k : k ≥ l} = ∥Ak0∥

1
k0 (4)

Proof. Since q0 is a multiple of q, then q0/q ∈ N and using (2) and (3) one gets

∥Aq0∥1/q0 = ∥Aqq0/q∥1/q0 ≤ ∥Aq
∥
q0/(qq0) = ∥Aq

∥
1/q
≤ ∥Ak0∥1/k0 . (5)

For any integer k ≥ l+ qwe can write k = l+ i+ jq for positive integers i and jwith 0 ≤ i ≤ q− 1 and j = [k− (l+ i)]/q,
and then using (2), (3) and (5) it follows that

∥Ak
∥

1
k ≤


∥Al+i
∥∥Aq
∥
j 1

k ≤


∥Ak0∥

l+i
k0 ∥Ak0∥

jq
k0

 1
k

= ∥Ak0∥
k

k0k = ∥Ak0∥
1
k0 . � (6)

2. Taylor algorithm

Taylor approximation of orderm of exponential of matrix A ∈ Cn×n can be expressed as the matrix polynomial Tm(A) =m
k=0 A

k/k!. The scaling and squaring algorithmswith Taylor approximations are based on the approximation eA =

e2
−sA

2s

≈

Tm(2−sA)

2s [1], where the nonnegative integers m and s are chosen to achieve full machine accuracy at a minimum
cost.

A general scaling and squaring Taylor algorithm for computing thematrix exponential is presented in Algorithm 1, where
mM is the maximum allowed value ofm.

Algorithm 1 General scaling and squaring Taylor algorithm for computing B = eA, where A ∈ Cn×n andmM is themaximum
approximation order allowed.
1: Preprocessing of matrix A.
2: Choosemk 6 mM , and an adequate scaling parameter s ∈ N ∪ {0} for the Taylor approximation with scaling.
3: Compute B = Tmk(A/2s) using (7)
4: for i = 1 : s do
5: B = B2

6: end for
7: Postprocessing of matrix B.

The preprocessing and postprocessing steps (1 and 7) are based on applying transformations to reduce the normofmatrix
A, see [2,8], and will not be discussed in this paper.

In Step 2, the optimal order of Taylor approximationmk 6 mM and the scaling parameter s are chosen. Matrix polynomial
Tm(2sA) can be computed optimally in terms of matrix products using values for m in the set mk = {1, 2, 4, 6, 9, 12, 16,
20, 25, 30, . . .}, k = 0, 1, . . . , respectively, see [2, p. 72–74]. The choice of s is fully described in Section 3.

After that, in Step 3,we compute thematrix exponential approximation of the scaledmatrix by using themodifiedHorner
and Paterson–Stockmeyer’s method proposed in [4, p. 1836–1837]. Note that this modified method has the same optimal
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